A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled |χ state is presented in this paper. In the scheme, the sender...A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled |χ state is presented in this paper. In the scheme, the sender Alice distributes a quantum secret with a Bell-state measurement and publishes her measurement outcomes via a classical channel to three agents who are divided into two grades. One agent is in the upper grade, while the other two agents are in the lower grade. Then by introducing an ancillary qubit, the agent of the upper grade only needs the assistance of any one of the other two agents for probabilistically obtaining the secret, while an agent of the lower grade needs the help of both the other two agents by using a controlled-NOT operation and a proper positive operator-valued measurement instead of the usual projective measurement. In other words, the agents of two different grades have different authorities to reconstruct Alice's secret in a probabilistic manner. The scheme can also be modified to implement the threshold-controlled teleportation.展开更多
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor...Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.展开更多
This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. ...This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.展开更多
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit stat...Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071178) and the Research Foundation of the Education Department of Sichuan Province, China (Grant No. 12ZB106).
文摘A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled |χ state is presented in this paper. In the scheme, the sender Alice distributes a quantum secret with a Bell-state measurement and publishes her measurement outcomes via a classical channel to three agents who are divided into two grades. One agent is in the upper grade, while the other two agents are in the lower grade. Then by introducing an ancillary qubit, the agent of the upper grade only needs the assistance of any one of the other two agents for probabilistically obtaining the secret, while an agent of the lower grade needs the help of both the other two agents by using a controlled-NOT operation and a proper positive operator-valued measurement instead of the usual projective measurement. In other words, the agents of two different grades have different authorities to reconstruct Alice's secret in a probabilistic manner. The scheme can also be modified to implement the threshold-controlled teleportation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52105303 and 52025053)Natural Science Foundation of Jilin Province(No.20220101209JC)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003).
文摘Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.
文摘This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671087)
文摘Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.