Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose n...Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications ...The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.展开更多
基金supported by the National Natural Science Foundation of China(No.21973086 and No.21633006)the Ministry of Education of China(111 Project Grant No.B18051)+1 种基金the Fundamental Research Funds for the Central Universities(No.WK2060000018)The computational resources are provided by the Supercomputing Center of University of Science and Technology of China.
基金This work was supported by the National Natural Science Foundation of China(21973086,22203083)the Fundamental Research Funds for the Central Universities(WK2060000018).
基金supported by the National Natural Science Foundation of China(21103157,21233007,and 21322305)the Fundamental Research Funds for Central Universities(2340000034 and 2340000025)the Strategic Priority Research Program(B)of the CAS(XDB01020000)
文摘Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
文摘The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.
基金supprt from National Science Foundation of China (Nos.21033008,21073169,21103157)National Basic Research Program of China(No.2010CB923300 and No.2011CB921400)+2 种基金Fundamental Research Funds for the Central Universities of China (No.2340000034)Innovation Funds for Young Researchers of USTC(No.2340000025)Hong Kong UGC(No.AoE/P-04/08-2)