视频目标分割是视频监视与视频目标跟踪、视频目标识别以及视频编辑的基础.本文提出了一种基于隐条件随机场(Hidden conditional random fields,HCRF)的自适应视频分割算法,利用HCRF模型对视频序列中的时空邻域关系建模.使用在线学习的...视频目标分割是视频监视与视频目标跟踪、视频目标识别以及视频编辑的基础.本文提出了一种基于隐条件随机场(Hidden conditional random fields,HCRF)的自适应视频分割算法,利用HCRF模型对视频序列中的时空邻域关系建模.使用在线学习的方式对相应的参数进行调整,实现对时空邻域约束关系的权重调整,提高视频目标分割细节上的效果.大量的数据测试表明,与高斯混合模型(Gaussian mixture model,GMM)和联合时空的马尔可夫随机场(Markov random fields,MRF)等算法相比,该算法的分割错误率分别降低了23%和19%.展开更多
精彩事件检测在体育视频语义分析领域具有很高的学术研究价值和广泛的市场应用前景.利用隐条件随机场(hidden conditional random field,HCRF)模型在表达和识别语义事件方面的强大功能,创新性地提出了一种融合了HCRF和情感激励模型(affe...精彩事件检测在体育视频语义分析领域具有很高的学术研究价值和广泛的市场应用前景.利用隐条件随机场(hidden conditional random field,HCRF)模型在表达和识别语义事件方面的强大功能,创新性地提出了一种融合了HCRF和情感激励模型(affective arousal model,AAM)的精彩事件检测方法.首先,通过精彩事件视频结构语义分析,定义了13种多模态语义线索,以准确描述精彩事件富含的语义信息;其次,在基于概念格的多模态语义线索聚类基础上,添加时域特征信息,以构建特征值加权的情感激励模型,得到了各类精彩事件的情感激励值;最后,在小规模训练样本情况下,有效建立了各类精彩事件检测的HCRF模型,基于视频语义镜头序列、情感激励值序列和精彩事件之间的映射关系,从多模态语义线索、视频结构语义、情感语义等多个维度挖掘了精彩事件的潜在规律,实现了同一HCRF模型下各类精彩事件的同时检测.实验证明了该方法的有效性.展开更多
MicroRNAs( miRNAs) are reported to be associated with various diseases. The identification of disease-related miRNAs would be beneficial to the disease diagnosis and prognosis. However,in contrast with the widely avai...MicroRNAs( miRNAs) are reported to be associated with various diseases. The identification of disease-related miRNAs would be beneficial to the disease diagnosis and prognosis. However,in contrast with the widely available expression profiling, the limited knowledge of molecular function restrict the development of previous methods based on network similarity measure. To construct reliable training data,the decision fusion method is used to prioritize the results of existing methods. After that,the performance of decision fusion method is validated. Furthermore,in consideration of the long range dependencies of successive expression values,Hidden Conditional Random Field model( HCRF) is selected and applied to miRNA expression profiling to infer disease-associated miRNAs. The results show that HCRF achieves superior performance and outperforms the previous methods. The results also demonstrate the power of using expression profiling for discovering disease-associated miRNAs.展开更多
足球视频精彩事件检测一直是视频语义分析领域研究的热点和难点.文中利用隐条件随机场(hidden conditional random field,HCRF)模型在表达和识别语义事件方面的强大功能,提出一种多维语义线索和HCRF的角球、点球和红黄牌精彩事件检测框...足球视频精彩事件检测一直是视频语义分析领域研究的热点和难点.文中利用隐条件随机场(hidden conditional random field,HCRF)模型在表达和识别语义事件方面的强大功能,提出一种多维语义线索和HCRF的角球、点球和红黄牌精彩事件检测框架.首先通过对精彩事件视频结构语义进行分析,定义了10种多维语义线索,以准确描述精彩事件富含的语义信息;然后对视频片段进行物理镜头分割,对镜头关键帧提取多维语义线索得到特征矢量,再将测试视频片段中所有镜头的特征矢量共同构成观察序列;最后在小规模训练样本的情况下将观察序列作为HCRF模型的输入,建立了精彩事件检测的HCRF模型.文中基于音视频底层特征、多维语义线索及精彩语义事件之间的映射关系,从视频结构语义的多个维度挖掘了精彩事件的内在规律,准确地实现了精彩事件的检测.实验结果表明了该框架的有效性.展开更多
为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-ter...为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。展开更多
鉴于自动语音识别(ASR)中置信度估计困难的问题,该文提出一种基于多知识源融合的策略来提高置信度的鉴别能力。具体做法是,首先选择关于识别结果的声学层、语言层和语义层等不同层次的信息,然后通过实验确定这些信息不同的组合方式,并...鉴于自动语音识别(ASR)中置信度估计困难的问题,该文提出一种基于多知识源融合的策略来提高置信度的鉴别能力。具体做法是,首先选择关于识别结果的声学层、语言层和语义层等不同层次的信息,然后通过实验确定这些信息不同的组合方式,并以此为特征在隐藏单元条件随机场(Hidden-units Conditional Random Fields,HuCRFs)框架下计算识别结果的条件概率。最后将HuCRFs条件概率作为语音识别结果置信度的新的估计。实验首先证明了HuCRFs条件概率是比归一化的网格后验概率鉴别能力更强的一种置信度估计方法。同时基于HuCRFs条件概率置信度,对解码器一遍识别得到的网格重新搜索最佳候选序列,取得了相对一遍识别最佳候选序列绝对近2%的字错误率(CER)下降。同时,该文也对比了基于HuCRFs条件概率搜索的最佳候选序列和基于长语言模型网格重估的最佳候选序列的性能,进一步证明了使用HuCRFs条件概率作为置信度估计是一种更好的选择。展开更多
文摘视频目标分割是视频监视与视频目标跟踪、视频目标识别以及视频编辑的基础.本文提出了一种基于隐条件随机场(Hidden conditional random fields,HCRF)的自适应视频分割算法,利用HCRF模型对视频序列中的时空邻域关系建模.使用在线学习的方式对相应的参数进行调整,实现对时空邻域约束关系的权重调整,提高视频目标分割细节上的效果.大量的数据测试表明,与高斯混合模型(Gaussian mixture model,GMM)和联合时空的马尔可夫随机场(Markov random fields,MRF)等算法相比,该算法的分割错误率分别降低了23%和19%.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61271346,61571163,61532014,61402132 and 91335112)
文摘MicroRNAs( miRNAs) are reported to be associated with various diseases. The identification of disease-related miRNAs would be beneficial to the disease diagnosis and prognosis. However,in contrast with the widely available expression profiling, the limited knowledge of molecular function restrict the development of previous methods based on network similarity measure. To construct reliable training data,the decision fusion method is used to prioritize the results of existing methods. After that,the performance of decision fusion method is validated. Furthermore,in consideration of the long range dependencies of successive expression values,Hidden Conditional Random Field model( HCRF) is selected and applied to miRNA expression profiling to infer disease-associated miRNAs. The results show that HCRF achieves superior performance and outperforms the previous methods. The results also demonstrate the power of using expression profiling for discovering disease-associated miRNAs.
文摘足球视频精彩事件检测一直是视频语义分析领域研究的热点和难点.文中利用隐条件随机场(hidden conditional random field,HCRF)模型在表达和识别语义事件方面的强大功能,提出一种多维语义线索和HCRF的角球、点球和红黄牌精彩事件检测框架.首先通过对精彩事件视频结构语义进行分析,定义了10种多维语义线索,以准确描述精彩事件富含的语义信息;然后对视频片段进行物理镜头分割,对镜头关键帧提取多维语义线索得到特征矢量,再将测试视频片段中所有镜头的特征矢量共同构成观察序列;最后在小规模训练样本的情况下将观察序列作为HCRF模型的输入,建立了精彩事件检测的HCRF模型.文中基于音视频底层特征、多维语义线索及精彩语义事件之间的映射关系,从视频结构语义的多个维度挖掘了精彩事件的内在规律,准确地实现了精彩事件的检测.实验结果表明了该框架的有效性.
文摘为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。
文摘鉴于自动语音识别(ASR)中置信度估计困难的问题,该文提出一种基于多知识源融合的策略来提高置信度的鉴别能力。具体做法是,首先选择关于识别结果的声学层、语言层和语义层等不同层次的信息,然后通过实验确定这些信息不同的组合方式,并以此为特征在隐藏单元条件随机场(Hidden-units Conditional Random Fields,HuCRFs)框架下计算识别结果的条件概率。最后将HuCRFs条件概率作为语音识别结果置信度的新的估计。实验首先证明了HuCRFs条件概率是比归一化的网格后验概率鉴别能力更强的一种置信度估计方法。同时基于HuCRFs条件概率置信度,对解码器一遍识别得到的网格重新搜索最佳候选序列,取得了相对一遍识别最佳候选序列绝对近2%的字错误率(CER)下降。同时,该文也对比了基于HuCRFs条件概率搜索的最佳候选序列和基于长语言模型网格重估的最佳候选序列的性能,进一步证明了使用HuCRFs条件概率作为置信度估计是一种更好的选择。