A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influe...A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed anal- ysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB301900,2012CB619304,and 2010CB327504)the National High Technology Research and Development Program of China(Grant No.2011AA03A103)+1 种基金the National Nature Science Foundation of China(Grant Nos.60990311,60906025,60936004,and 61176063)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2011010 and BK2009255)
文摘A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a con-venient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed anal- ysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.