A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base...A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.展开更多
A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into po...A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into polymer fibrils in the solid state and such fibril-assembly can construct the morphological framework by forming a network structure, inducing the formation of ideal BHJ morphology. Our recent works have revealed that the fibril network strategy(FNS) can control the blend morphology in fullerene, non-fullerene and ternary OSCs. It has been shown that the formation of fibril network can optimize phase separation scale and ensure efficient exciton dissociation and charge carriers transport, thus leading to impressive power conversion efficiencies(PCEs) and high fill factor(FF) values. We believe that FNS will provide a promising approach for the optimization of active layer morphology and the improvement of photovoltaic performance, and further promote the commercialization of OSCs.展开更多
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO...The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (Voc: 749 mV, Jsc: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.展开更多
Chlorophylls(Chls), and associated chlorophyll derivatives, are one of the oldest, most versatile organic semiconductors found in nature. Herein, we present two easily semi-synthesized chlorophyll derivatives, namely,...Chlorophylls(Chls), and associated chlorophyll derivatives, are one of the oldest, most versatile organic semiconductors found in nature. Herein, we present two easily semi-synthesized chlorophyll derivatives, namely, chlorin e6 trimethyl ester(Ce6Me3) and its copper complex(Cu–Ce6 Me3), as the p-type dopants for organic semiconductors and their impact in organic solar cells(OSCs). In our study, both Chls showed intense Soret and Q y bands in the UV-visible spectra, leading to an effect means for capturing solar light and energy. Chls also exhibited high carrier mobility owing to the partial formation of aggregates through the spin-coating process. Using Chls, we fabricated OSCs in both planar-heterojunction(PHJ) and bulkheterojunction(BHJ) solar cell configurations, together with C70/PC70 BM as electron acceptors. In PHJ solar cells, we received solar power conversion efficiencies(PCEs) of only 0.85% and 0.93% for Cu–Ce6 Me 3-and Ce6Me3-based devices, respectively, with the thickness of the donor layer at 5 nm. In BHJ cells, we achieved much higher PCEs of 1.53% and 2.05% for Cu–Ce6Me3 :PC 70 BM and Ce6Me3 :PC 70 BM respectively, where both blending ratios were set to 1:8. The improvement on PCE in BHJ cells may be attributed to the better charge separation increase at the donor–acceptor interface.展开更多
Organic solar cells(OSCs) continuously attract much attention due to their potentials as the low-cost and lightweight sources of renewable energy,and the power conversion efficiency(PCE) of the state-of-the-art OSCs h...Organic solar cells(OSCs) continuously attract much attention due to their potentials as the low-cost and lightweight sources of renewable energy,and the power conversion efficiency(PCE) of the state-of-the-art OSCs has reached over 10.0%.Especially,there has been an unexpected breakthrough and rapid evolution of highly efficient organic-inorganic hybrid perovskite solar cells(PSCs),and the PCE has been improved to over 20%.The interface plays a very important role on the performance of both OSCs and PSCs,as well as their stability.It is imperative to control the interface properties and understand the mechanisms for obtaining highly efficient OSCs and PSCs.In this review,we will summarize our research progress on the interface modification of OSCs and PSCs using the electron transport layer and hole transport layer,as well as the molecular template layer.展开更多
Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(C...Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(CuBiI4) thin films directly on ITO substrate at room temperature, by utilizing a Bi-Cu alloy layer as precursor. X-ray diffraction and transmission electron microscopy(TEM) results verified the formation of well crystallized CuBiI4 thin films with [222] orientation. The transient photovoltage(TPV) analysis revealed that the CuBiI4 is an n-type semiconductor with a suitable band gap of ~1.81 eV, preferable to photoelectric conversion compared with CH3NH3PbI3. It is very interesting that the subsequent spin-coating process of the classical Spiro-MeOTAD organic solution with TBP and acetonitrile resulted in a dense and smooth CuBiI4:SpiroMeOTAD bulk-heterojunction film. The preliminarily fabricated simple sandwich structures of ITO/CuBiI4:Spiro-MeOTAD/Au hybrid solar cell devices displayed efficient photovoltaic performance with the PCE up to 1.119% of the best sample. The room temperature direct metal surface elemental reaction(DMSER) method may provide a new insight for all-inorganic lead free perovskite-like AaBbXx compounds and high performance photovoltaic devices.展开更多
The p-GaAs/n-InP heterojunction was fabricated by direct wafer bonding technology. The optimized atomic level contact between GaAs and InP is critical for getting good ohmic contact and removing the bubbles or voids a...The p-GaAs/n-InP heterojunction was fabricated by direct wafer bonding technology. The optimized atomic level contact between GaAs and InP is critical for getting good ohmic contact and removing the bubbles or voids at the interface, which is helpful to enhance the efficiency of wafer bonded multi-junction solar cells. Through the surface megasonic cleaning and the plasma treatment, we have achieved the high quality bonding interface without bubbles or voids and with interface resistivity of about 0.1 ohms/cm^2. A GaInP/GaAs//InGaAsP/InGaAs 4-junction solar cell was prepared with the high efficiency of 34.4%(AM0)at 1 sun.展开更多
We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO(AZO)/n-type oxide semiconductor/p-type Cu_2O heterojunction solar cells fabricated using p-type Cu_2O sheets pre...We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO(AZO)/n-type oxide semiconductor/p-type Cu_2O heterojunction solar cells fabricated using p-type Cu_2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu_2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu_2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa_2O_4 thin-film layer. In most of the Cu_2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO–MgO and Ga_2O_3–Al_2O_3systems, higher conversion efficiencies(á/ as well as a high open circuit voltage(Voc/ were obtained by using a relatively small amount of MgO or Al_2O_3, e.g.,(ZnO)0:91–(MgO)0:09 and(Ga_2O_3/0:975–(Al_2O_3/0:025, respectively. When Cu_2O-based heterojunction solar cells were fabricated using Al_2O_3–Ga_2O_3–MgO–ZnO(AGMZO)multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Vocof 0.98 V and an á of 4.82% were obtained. In addition, an enhanced á and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu_2O heterojunction solar cells fabricated using Na-doped Cu_2O(Cu_2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an á of 6.25% and a Vocof 0.84 V were obtained in a Mg F2/AZO/n-(Ga_2O_3–Al_2O_3//p-Cu_2O:Na heterojunction solar cell fabricated using a Cu_2O:Na sheet with a resistivity of approximately展开更多
基金supported by the Science & Technology Project of Anhui Province (16030701091)the Natural Science Research Project of Anhui Provincial Education Department (KJ2019A0030)+2 种基金the Support Project of Outstanding Young Talents in Anhui Provincial Universities (gxyqZD2018006)the National Natural Science Foundation of China(11704002, 31701323)the Anhui Provincial Natural Science Foundation (1908085QF251,1808085MF185)
文摘A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.
基金supported by the National Natural Science Foundation of China (51825301, 21734001)
文摘A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into polymer fibrils in the solid state and such fibril-assembly can construct the morphological framework by forming a network structure, inducing the formation of ideal BHJ morphology. Our recent works have revealed that the fibril network strategy(FNS) can control the blend morphology in fullerene, non-fullerene and ternary OSCs. It has been shown that the formation of fibril network can optimize phase separation scale and ensure efficient exciton dissociation and charge carriers transport, thus leading to impressive power conversion efficiencies(PCEs) and high fill factor(FF) values. We believe that FNS will provide a promising approach for the optimization of active layer morphology and the improvement of photovoltaic performance, and further promote the commercialization of OSCs.
基金supported by the National Natural Science Foundation of China(No.61076055)the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University(No.FDS-KL2011-04)+1 种基金the Zhejiang Provincial Science and Technology Key Innovation Team(No.2011R50012)the Zhejiang Provincial Key Laboratory(No.2013E10022)
文摘The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concen- tration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (Voc: 749 mV, Jsc: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.
基金partially supported by the Natural Science Foundation of China (No. 11574111 to X-F.W.)JSPS KAKENHI Grant Number JP16K05826 in Scientific Research (C) (to S.S.)+1 种基金supported by the Natural Science Foundation of Jilin Province (No. 20160101303JC , 20180101238JC , 20170204076GX , 20180101006JC to C.S.)Post-Doctoral Innovative Talent Support Program (BX20180127 to S.W.)
文摘Chlorophylls(Chls), and associated chlorophyll derivatives, are one of the oldest, most versatile organic semiconductors found in nature. Herein, we present two easily semi-synthesized chlorophyll derivatives, namely, chlorin e6 trimethyl ester(Ce6Me3) and its copper complex(Cu–Ce6 Me3), as the p-type dopants for organic semiconductors and their impact in organic solar cells(OSCs). In our study, both Chls showed intense Soret and Q y bands in the UV-visible spectra, leading to an effect means for capturing solar light and energy. Chls also exhibited high carrier mobility owing to the partial formation of aggregates through the spin-coating process. Using Chls, we fabricated OSCs in both planar-heterojunction(PHJ) and bulkheterojunction(BHJ) solar cell configurations, together with C70/PC70 BM as electron acceptors. In PHJ solar cells, we received solar power conversion efficiencies(PCEs) of only 0.85% and 0.93% for Cu–Ce6 Me 3-and Ce6Me3-based devices, respectively, with the thickness of the donor layer at 5 nm. In BHJ cells, we achieved much higher PCEs of 1.53% and 2.05% for Cu–Ce6Me3 :PC 70 BM and Ce6Me3 :PC 70 BM respectively, where both blending ratios were set to 1:8. The improvement on PCE in BHJ cells may be attributed to the better charge separation increase at the donor–acceptor interface.
基金supported by the Program for New Century Excellent Talents in University(NCET-13-0598)the Hunan Provincial Natural Science Foundation of China(2015JJ1015)+1 种基金the Project of Innovation-driven Plan in Central South University(2015CXS036)the support by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China
文摘Organic solar cells(OSCs) continuously attract much attention due to their potentials as the low-cost and lightweight sources of renewable energy,and the power conversion efficiency(PCE) of the state-of-the-art OSCs has reached over 10.0%.Especially,there has been an unexpected breakthrough and rapid evolution of highly efficient organic-inorganic hybrid perovskite solar cells(PSCs),and the PCE has been improved to over 20%.The interface plays a very important role on the performance of both OSCs and PSCs,as well as their stability.It is imperative to control the interface properties and understand the mechanisms for obtaining highly efficient OSCs and PSCs.In this review,we will summarize our research progress on the interface modification of OSCs and PSCs using the electron transport layer and hole transport layer,as well as the molecular template layer.
基金supported by the National Natural Science Foundation of China (21673200, 61504117 and U1604121)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (144200510014)
文摘Both bismuth and copper are non-toxic and earth-abundant elements suitable for lead-free halide perovskite-like photovoltaic devices. Here, we report a highly facile route for in-situ producing copper-bismuth-iodide(CuBiI4) thin films directly on ITO substrate at room temperature, by utilizing a Bi-Cu alloy layer as precursor. X-ray diffraction and transmission electron microscopy(TEM) results verified the formation of well crystallized CuBiI4 thin films with [222] orientation. The transient photovoltage(TPV) analysis revealed that the CuBiI4 is an n-type semiconductor with a suitable band gap of ~1.81 eV, preferable to photoelectric conversion compared with CH3NH3PbI3. It is very interesting that the subsequent spin-coating process of the classical Spiro-MeOTAD organic solution with TBP and acetonitrile resulted in a dense and smooth CuBiI4:SpiroMeOTAD bulk-heterojunction film. The preliminarily fabricated simple sandwich structures of ITO/CuBiI4:Spiro-MeOTAD/Au hybrid solar cell devices displayed efficient photovoltaic performance with the PCE up to 1.119% of the best sample. The room temperature direct metal surface elemental reaction(DMSER) method may provide a new insight for all-inorganic lead free perovskite-like AaBbXx compounds and high performance photovoltaic devices.
基金supported by the Shanghai Rising-Star Program (No. 14QB1402800)
文摘The p-GaAs/n-InP heterojunction was fabricated by direct wafer bonding technology. The optimized atomic level contact between GaAs and InP is critical for getting good ohmic contact and removing the bubbles or voids at the interface, which is helpful to enhance the efficiency of wafer bonded multi-junction solar cells. Through the surface megasonic cleaning and the plasma treatment, we have achieved the high quality bonding interface without bubbles or voids and with interface resistivity of about 0.1 ohms/cm^2. A GaInP/GaAs//InGaAsP/InGaAs 4-junction solar cell was prepared with the high efficiency of 34.4%(AM0)at 1 sun.
文摘We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO(AZO)/n-type oxide semiconductor/p-type Cu_2O heterojunction solar cells fabricated using p-type Cu_2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu_2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu_2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa_2O_4 thin-film layer. In most of the Cu_2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO–MgO and Ga_2O_3–Al_2O_3systems, higher conversion efficiencies(á/ as well as a high open circuit voltage(Voc/ were obtained by using a relatively small amount of MgO or Al_2O_3, e.g.,(ZnO)0:91–(MgO)0:09 and(Ga_2O_3/0:975–(Al_2O_3/0:025, respectively. When Cu_2O-based heterojunction solar cells were fabricated using Al_2O_3–Ga_2O_3–MgO–ZnO(AGMZO)multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Vocof 0.98 V and an á of 4.82% were obtained. In addition, an enhanced á and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu_2O heterojunction solar cells fabricated using Na-doped Cu_2O(Cu_2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an á of 6.25% and a Vocof 0.84 V were obtained in a Mg F2/AZO/n-(Ga_2O_3–Al_2O_3//p-Cu_2O:Na heterojunction solar cell fabricated using a Cu_2O:Na sheet with a resistivity of approximately