Algorithms for numeric data classification have been applied for text classification. Usually the vector space model is used to represent text collections. The characteristics of this representation such as sparsity a...Algorithms for numeric data classification have been applied for text classification. Usually the vector space model is used to represent text collections. The characteristics of this representation such as sparsity and high dimensionality sometimes impair the quality of general-purpose classifiers. Networks can be used to represent text collections, avoiding the high sparsity and allowing to model relationships among different objects that compose a text collection. Such network- based representations can improve the quality of the classification results. One of the simplest ways to represent textual collections by a network is through a bipartite heterogeneous network, which is composed of objects that represent the documents connected to objects that represent the terms. Heterogeneous bipartite networks do not require computation of similarities or relations among the objects and can be used to model any type of text collection. Due to the advantages of representing text collections through bipartite heterogeneous networks, in this article we present a text classifier which builds a classification model using the structure of a bipartite heterogeneous network. Such an algorithm, referred to as IMBHN (Inductive Model Based on Bipartite Heterogeneous Network), induces a classification model assigning weights to objects that represent the terms for each class of the text collection. An empirical evaluation using a large amount of text collections from different domains shows that the proposed IMBHN algorithm produces significantly better results than k-NN, C4.5, SVM, and Naive Bayes algorithms.展开更多
Mining outliers in heterogeneous networks is crucial to many applications,but challenges abound.In this paper,we focus on identifying meta-path-based outliers in heterogeneous information network(HIN),and calculate th...Mining outliers in heterogeneous networks is crucial to many applications,but challenges abound.In this paper,we focus on identifying meta-path-based outliers in heterogeneous information network(HIN),and calculate the similarity between different types of objects.We propose a meta-path-based outlier detection method(MPOutliers)in heterogeneous information network to deal with problems in one go under a unified framework.MPOutliers calculates the heterogeneous reachable probability by combining different types of objects and their relationships.It discovers the semantic information among nodes in heterogeneous networks,instead of only considering the network structure.It also computes the closeness degree between nodes with the same type,which extends the whole heterogeneous network.Moreover,each node is assigned with a reliable weighting to measure its authority degree.Substantial experiments on two real datasets(AMiner and Movies dataset)show that our proposed method is very effective and efficient for outlier detection.展开更多
针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Laye...针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Layer Heterogeneous Graph Attention Network,GDHG).GDHG包含节点注意力机制和门控异构图注意力网络两层.首先,使用节点注意力机制,训练不同类型的节点注意力系数,再将系数输入门控异构图注意力网络,训练得到门控双层注意力.然后,将门控双层注意力与节点的不同状态相乘,得到聚合的节点特征.最后,使用softmax函数对文本进行分类.GDHG利用节点注意力机制和门控异构图注意力网络的信息遗忘机制对节点信息进行聚集,得到有效的相邻节点信息,进而挖掘不同邻居节点的隐藏信息,提高聚合远程节点信息的能力.在Twitter、MR、Snippets、AGNews四个短文本数据集上的实验验证GDHG性能较优.展开更多
Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understan...Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.展开更多
基金supported by So Paulo Research Foundation(FAPESP)of Brasil under Grant Nos.2011/12823-6,2011/23689-9,and 2011/19850-9
文摘Algorithms for numeric data classification have been applied for text classification. Usually the vector space model is used to represent text collections. The characteristics of this representation such as sparsity and high dimensionality sometimes impair the quality of general-purpose classifiers. Networks can be used to represent text collections, avoiding the high sparsity and allowing to model relationships among different objects that compose a text collection. Such network- based representations can improve the quality of the classification results. One of the simplest ways to represent textual collections by a network is through a bipartite heterogeneous network, which is composed of objects that represent the documents connected to objects that represent the terms. Heterogeneous bipartite networks do not require computation of similarities or relations among the objects and can be used to model any type of text collection. Due to the advantages of representing text collections through bipartite heterogeneous networks, in this article we present a text classifier which builds a classification model using the structure of a bipartite heterogeneous network. Such an algorithm, referred to as IMBHN (Inductive Model Based on Bipartite Heterogeneous Network), induces a classification model assigning weights to objects that represent the terms for each class of the text collection. An empirical evaluation using a large amount of text collections from different domains shows that the proposed IMBHN algorithm produces significantly better results than k-NN, C4.5, SVM, and Naive Bayes algorithms.
基金the National Natural Science Foundation of China(Grant Nos.61872163 and 61806084)China Postdoctoral Science Foundation project(2018M631872)Jilin Provincial Education Department project(JJKH20190160KJ).
文摘Mining outliers in heterogeneous networks is crucial to many applications,but challenges abound.In this paper,we focus on identifying meta-path-based outliers in heterogeneous information network(HIN),and calculate the similarity between different types of objects.We propose a meta-path-based outlier detection method(MPOutliers)in heterogeneous information network to deal with problems in one go under a unified framework.MPOutliers calculates the heterogeneous reachable probability by combining different types of objects and their relationships.It discovers the semantic information among nodes in heterogeneous networks,instead of only considering the network structure.It also computes the closeness degree between nodes with the same type,which extends the whole heterogeneous network.Moreover,each node is assigned with a reliable weighting to measure its authority degree.Substantial experiments on two real datasets(AMiner and Movies dataset)show that our proposed method is very effective and efficient for outlier detection.
文摘针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Layer Heterogeneous Graph Attention Network,GDHG).GDHG包含节点注意力机制和门控异构图注意力网络两层.首先,使用节点注意力机制,训练不同类型的节点注意力系数,再将系数输入门控异构图注意力网络,训练得到门控双层注意力.然后,将门控双层注意力与节点的不同状态相乘,得到聚合的节点特征.最后,使用softmax函数对文本进行分类.GDHG利用节点注意力机制和门控异构图注意力网络的信息遗忘机制对节点信息进行聚集,得到有效的相邻节点信息,进而挖掘不同邻居节点的隐藏信息,提高聚合远程节点信息的能力.在Twitter、MR、Snippets、AGNews四个短文本数据集上的实验验证GDHG性能较优.
文摘Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.