期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PI-Unet:异质虹膜精确分割神经网络模型的研究 被引量:9
1
作者 周锐烨 沈文忠 《计算机工程与应用》 CSCD 北大核心 2021年第15期223-229,共7页
在虹膜识别系统中,异质虹膜图像(可见光和红外图像)的分割是最重要且最有挑战性的一个任务,该任务的难点在于针对异质虹膜图像,要同时兼顾虹膜分割的准确率和快速性。提出了适用于异质虹膜分割的神经网络模型PI-Unet(Precise Iris Unet... 在虹膜识别系统中,异质虹膜图像(可见光和红外图像)的分割是最重要且最有挑战性的一个任务,该任务的难点在于针对异质虹膜图像,要同时兼顾虹膜分割的准确率和快速性。提出了适用于异质虹膜分割的神经网络模型PI-Unet(Precise Iris Unet)以及用于训练该网络模型的数据增强方法和损失函数。对PI-Unet的Encoder和Decoder进行实验探索,得出能同时兼顾准确率和快速性的网络结构,将提出的数据增强方法和损失函数用于该网络进行训练,在CASIA-iris-intervel-v4和UBIRIS.v2虹膜图像数据库上测试该网络的准确率、参数量和计算量。测试结果表明,提出的数据增强方法和损失函数能有效提高异质虹膜分割准确率,PI-Unet与传统虹膜分割算法和其他虹膜分割神经网络相比,对异质虹膜图像的分割准确率更高且参数量和计算量更少,能够适用于低性能的边缘计算设备。 展开更多
关键词 虹膜识别 异质虹膜分割 神经网络 数据增强 损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部