In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance sim...In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.展开更多
The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole tr...The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has been widely studied as a visible light responsive photocatalyst in recent years,due to its facile synthesis,low cost,high stability,and appropriate bandgap/band positions.In t...Graphitic carbon nitride(g-C_(3)N_(4))has been widely studied as a visible light responsive photocatalyst in recent years,due to its facile synthesis,low cost,high stability,and appropriate bandgap/band positions.In this review,we firstly introduce and compare various exfoliation approaches of bulk g-C_(3)N_(4)into ultrathin g-C_(3)N_(4)nanosheets.Then,many modification strategies of g-C_(3)N_(4)nanosheets are also reviewed,including heterojunction construction,doping,defect control,and structure design.Thereafter,the charge transfer mechanism in g-C_(3)N_(4)nanosheets based heterojunctions is present,e.g.,Z-scheme,S-scheme and other forms.Besides,the photocatalytic applications of g-C_(3)N_(4)nanosheets based photocatalysts are summarized including environmental remediation,energy generation and storage,organic synthesis,and disinfection.This review ends with a summary and some perspectives on the challenges and new directions in exploring g-C_(3)N_(4)nanosheets-based photocatalysts.展开更多
Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks([1,2]). In this paper we present a comprehensive ...Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks([1,2]). In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEBPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.展开更多
Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covale...Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.展开更多
An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-cat...An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-catalyst was formed in situ by heating and oxidizing a tungsten wire in air.Cyclic voltammetry and current-time curves were used to characterize the electrochemical properties of the electrodes and system.Aeration and activation of molecular oxygen by self-biased TiO2/g-C3N4 led to the formation of reactive oxidizing species in the fuel cell.The mechanism of simultaneous anodic oxidation of pollutants and cathodic reduction of nitrate was proposed.The spontaneously formed circuit and tiny current were used simultaneously in treating two kinds of wastewater in the reactor chambers,even without light illumination or an external applied voltage.This new catalytic pollution control route can lower energy consumption and degrade many other kinds of pollutants.展开更多
Heterojunction with intrinsic thin-layer (HIT) solar cells are sensitive to interface state density. Tradi- tional texture process for silicon solar cells is not suitable for HIT one. Thus, sodium hydroxide (NaOH)...Heterojunction with intrinsic thin-layer (HIT) solar cells are sensitive to interface state density. Tradi- tional texture process for silicon solar cells is not suitable for HIT one. Thus, sodium hydroxide (NaOH), isopropanol (IPA) and mixed additive were tentatively introduced for the texturization of HIT solar cells in this study. Then, a mixture including nitric acid (HNO3), hydrofluoric acid (HF) and glacial acetic acid (CH3COOH) was employed to round pyramid structure. The morphology of textured surface and the influence of etching time on surface reflectance were studied, and the relationship between etching time and surface reflectance, vertex angle of pyramid structure was analyzed. It was found that the mixture consisting of 1.1 wt% NaOH, 3 vol% IPA and 0.3 vol% additives with etching time of 22.5 min is the best for H1T solar cells under the condition of 80℃. Uniform pyramid structure was observed and the base width of pyramid was about 2-4 μm. The average surface reflec- tance was 11.68%. Finally the effect of different processes on the performance of HIT solar cells was investigated. It was shown that these texturization and rounding techni- ques used in this study can increase short circuit current (Jsc), but they have little influence on fill factor (FF) and open circuit voltage (Voo) of HIT solar cells.展开更多
An AIGaN-based back-illuminated ultraviolet p-i-n detector is designed and its performance is analysed both simulately and experimentally. The width of p- and i-regions has been optimized to the best theoretic values....An AIGaN-based back-illuminated ultraviolet p-i-n detector is designed and its performance is analysed both simulately and experimentally. The width of p- and i-regions has been optimized to the best theoretic values. It is indicated that the changing of responsivity with increase of bias can not be attributed to the expansion of depletion layer as it is believed, but to two reasons: 1) the effect of GaN/AlGaN heterojunction barrier to block the electrons decreases with higher bias and 2) the recombination rate of excess carriers decreases due to the building up of an electric field in depletion region. At zero bias, the simulated responsivity reaches its maximum of 0.12 A/W with quantum efficiency of 55.1%. The measured peak responsivity is more than 0.09 A/W with quantum efficiency greater than 41.6%. The experimental data are almost consistent with the results of the simulation.展开更多
In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is ...In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is illustrated in detail. Different results under electrical bias, optical bias or combined electrical and optical bias are analyzed for an excellent UTC-DHPT performance. The results show that when the UTC-DHPT operates at three-terminal (3T) working mode with combined electrical bias and optical bias in base, it keeps a high optical responsivity of 34.72 A/W and the highest optical transition frequency of 120 GHz. The current gain of the 3T UTC-DHPT under 1.55-μm light illuminations reaches 62 dB. This indicates that the combined base electrical bias and optical bias of 3T UTC-DHPT can make sure that the UTC-DHPT provides high optical current gain and high optical transition frequency simultaneously.展开更多
Construction of photocatalysts with a Schottky heterojunction could realize highly efficient and stable degradation of organic pollutes in the wastewater.In this work,a precipitation method was used to prepare Ti_(3)C...Construction of photocatalysts with a Schottky heterojunction could realize highly efficient and stable degradation of organic pollutes in the wastewater.In this work,a precipitation method was used to prepare Ti_(3)C_(2)T_(X)-nanosheets/Cu_(2)O composite photocatalysts with the Schottky heterojunction for the decomposition of tetracycline(TC)antibiotics under visible light.As-prepared photocatalysts were characterized by various techniques such as X-ray diffraction analysis(XRD),High resolution transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).When the best Ti_(3)C_(2)T_(X)-nanosheets/Cu_(2)O composite was applied for the degradation of TC under visible light,the degradation efficiency reached up to 97.6%only in 50 min.It is considered that superoxide radical(O_(2)^(→))and hole(h^(+))were the main reactive species for the TC degradation,and in the Schottky heterojunction,e^(-)-h^(+)pairs in the catalyst could be transferred and separated effectively,resulting in obviously enhanced photocatalytic efficiency and stability.展开更多
A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of t...A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of temperature and humidity on the electrical properties of n-Si/CuPc hetero-junction has also been investigated.The characteristics of the junction have been observed to be temperature and humidity dependent,so it is suggested that this junction can be used as a temperature and humidity sensor.展开更多
A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on ...A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on (100) high resistivity silicon substrate by CMOS technology. When drain-source voltage equals 5.0 V and length and width ratio of the TFT channel is 80 μm/160 μm, the current and voltage magnetic sensitivities of the split-drain MAGFET based on the TFT are 0.018 mA/T and 55 mV/T, respectively. Through adopting nano-polysilicon thin films and nano-polysilicon thin films/high resistivity silicon heterojunction interfaces as the magnetic sensing layers, it is possible to realize detection of the external magnetic field. The test results show that magnetic sensitivity of the split-drain MAGFET can be improved significantly.展开更多
Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub&g...Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> employing nanoparticles perovskites solar cells in this work. CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> wafer-based hetero-junction solar cells were developed under atmospheric conditions using Graphite as a hole transport layer (HTL) and TiO<sub>2</sub> as an electron transport layer (ETL). In particular a considerable enhancement in power conversion efficiency (PCE < 0.01%) has been realized using optimum Graphene concentration (0.05 g/ml). The charge injection rate is radically faster for the particular Graphene composition than the pristine perovskites, which exposes ephemeral absorption in near to UV range. Graphene incorporation increased the average crystallite size and reduced the band gap 1.32 eV in the visible range. The expensive metals such as Ag and Au have been replaced by simple ITO, which tremendously reduces the fabrication cost of the PSCs. The fabricated devices were exposed to high conservation stability without cell encapsulation ambient condition for 150 days to show excellent stability.展开更多
文摘In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.
文摘The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.
基金the financial support by the Natural Science Foundation of China(Nos.21872102 and 22172080).
文摘Graphitic carbon nitride(g-C_(3)N_(4))has been widely studied as a visible light responsive photocatalyst in recent years,due to its facile synthesis,low cost,high stability,and appropriate bandgap/band positions.In this review,we firstly introduce and compare various exfoliation approaches of bulk g-C_(3)N_(4)into ultrathin g-C_(3)N_(4)nanosheets.Then,many modification strategies of g-C_(3)N_(4)nanosheets are also reviewed,including heterojunction construction,doping,defect control,and structure design.Thereafter,the charge transfer mechanism in g-C_(3)N_(4)nanosheets based heterojunctions is present,e.g.,Z-scheme,S-scheme and other forms.Besides,the photocatalytic applications of g-C_(3)N_(4)nanosheets based photocatalysts are summarized including environmental remediation,energy generation and storage,organic synthesis,and disinfection.This review ends with a summary and some perspectives on the challenges and new directions in exploring g-C_(3)N_(4)nanosheets-based photocatalysts.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50028302) and a grant of the Guangdong Province (Grant No. 990623).
文摘Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks([1,2]). In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEBPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.
基金the financially supported from the National Nat-ural Science Foundation of China(Nos.21978178,22008157,and 21776187)the Distinguished Young Scholars for the Natural Science Foundation of Sichuan Province(No.2023NSFSC1915)。
文摘Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.
基金supported by the National Natural Science Foundation of China (21177018, 21677025)the Program of Introducing Talents of Discipline to Universities (B13012)~~
文摘An anodic TiO2/g-C3N4 hetero-junction and cathodic WO3/W were used to build a self-sustained catalytic fuel cell system for oxidizing rhodamine B or triclosan and reducing NO3^--N to N2 simultaneously.The WO3 nano-catalyst was formed in situ by heating and oxidizing a tungsten wire in air.Cyclic voltammetry and current-time curves were used to characterize the electrochemical properties of the electrodes and system.Aeration and activation of molecular oxygen by self-biased TiO2/g-C3N4 led to the formation of reactive oxidizing species in the fuel cell.The mechanism of simultaneous anodic oxidation of pollutants and cathodic reduction of nitrate was proposed.The spontaneously formed circuit and tiny current were used simultaneously in treating two kinds of wastewater in the reactor chambers,even without light illumination or an external applied voltage.This new catalytic pollution control route can lower energy consumption and degrade many other kinds of pollutants.
文摘Heterojunction with intrinsic thin-layer (HIT) solar cells are sensitive to interface state density. Tradi- tional texture process for silicon solar cells is not suitable for HIT one. Thus, sodium hydroxide (NaOH), isopropanol (IPA) and mixed additive were tentatively introduced for the texturization of HIT solar cells in this study. Then, a mixture including nitric acid (HNO3), hydrofluoric acid (HF) and glacial acetic acid (CH3COOH) was employed to round pyramid structure. The morphology of textured surface and the influence of etching time on surface reflectance were studied, and the relationship between etching time and surface reflectance, vertex angle of pyramid structure was analyzed. It was found that the mixture consisting of 1.1 wt% NaOH, 3 vol% IPA and 0.3 vol% additives with etching time of 22.5 min is the best for H1T solar cells under the condition of 80℃. Uniform pyramid structure was observed and the base width of pyramid was about 2-4 μm. The average surface reflec- tance was 11.68%. Finally the effect of different processes on the performance of HIT solar cells was investigated. It was shown that these texturization and rounding techni- ques used in this study can increase short circuit current (Jsc), but they have little influence on fill factor (FF) and open circuit voltage (Voo) of HIT solar cells.
文摘An AIGaN-based back-illuminated ultraviolet p-i-n detector is designed and its performance is analysed both simulately and experimentally. The width of p- and i-regions has been optimized to the best theoretic values. It is indicated that the changing of responsivity with increase of bias can not be attributed to the expansion of depletion layer as it is believed, but to two reasons: 1) the effect of GaN/AlGaN heterojunction barrier to block the electrons decreases with higher bias and 2) the recombination rate of excess carriers decreases due to the building up of an electric field in depletion region. At zero bias, the simulated responsivity reaches its maximum of 0.12 A/W with quantum efficiency of 55.1%. The measured peak responsivity is more than 0.09 A/W with quantum efficiency greater than 41.6%. The experimental data are almost consistent with the results of the simulation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61006044)the Natural Science Foundation of Beijing,China(Grant Nos.4122014 and 4142007)the Fund from the Beijing Municipal Education Committee,China(Grant No.KM200910005001)
文摘In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is illustrated in detail. Different results under electrical bias, optical bias or combined electrical and optical bias are analyzed for an excellent UTC-DHPT performance. The results show that when the UTC-DHPT operates at three-terminal (3T) working mode with combined electrical bias and optical bias in base, it keeps a high optical responsivity of 34.72 A/W and the highest optical transition frequency of 120 GHz. The current gain of the 3T UTC-DHPT under 1.55-μm light illuminations reaches 62 dB. This indicates that the combined base electrical bias and optical bias of 3T UTC-DHPT can make sure that the UTC-DHPT provides high optical current gain and high optical transition frequency simultaneously.
基金supported by the Natural Science Foundation of Shanxi Province,China(201901D111308)Hirosaki University Fund.
文摘Construction of photocatalysts with a Schottky heterojunction could realize highly efficient and stable degradation of organic pollutes in the wastewater.In this work,a precipitation method was used to prepare Ti_(3)C_(2)T_(X)-nanosheets/Cu_(2)O composite photocatalysts with the Schottky heterojunction for the decomposition of tetracycline(TC)antibiotics under visible light.As-prepared photocatalysts were characterized by various techniques such as X-ray diffraction analysis(XRD),High resolution transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).When the best Ti_(3)C_(2)T_(X)-nanosheets/Cu_(2)O composite was applied for the degradation of TC under visible light,the degradation efficiency reached up to 97.6%only in 50 min.It is considered that superoxide radical(O_(2)^(→))and hole(h^(+))were the main reactive species for the TC degradation,and in the Schottky heterojunction,e^(-)-h^(+)pairs in the catalyst could be transferred and separated effectively,resulting in obviously enhanced photocatalytic efficiency and stability.
文摘A hetero-junction of n-silicon(n-Si) and copper phthalocyanine(CuPc) has been fabricated.The current -voltage characteristics were investigated to explain the rectification and conduction mechanism.The effect of temperature and humidity on the electrical properties of n-Si/CuPc hetero-junction has also been investigated.The characteristics of the junction have been observed to be temperature and humidity dependent,so it is suggested that this junction can be used as a temperature and humidity sensor.
基金Project supported by the National Natural Science Foundation of China(No.61006057)the China Postdoctoral Science Foundation Funded Project(No.2013M530163)+1 种基金the Natural Science Foundation of Heilongjiang Province(No.F201433)the Modern Sensor Technology Innovation Team for College of Heilongjiang Province(No.2012TD007)
文摘A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on (100) high resistivity silicon substrate by CMOS technology. When drain-source voltage equals 5.0 V and length and width ratio of the TFT channel is 80 μm/160 μm, the current and voltage magnetic sensitivities of the split-drain MAGFET based on the TFT are 0.018 mA/T and 55 mV/T, respectively. Through adopting nano-polysilicon thin films and nano-polysilicon thin films/high resistivity silicon heterojunction interfaces as the magnetic sensing layers, it is possible to realize detection of the external magnetic field. The test results show that magnetic sensitivity of the split-drain MAGFET can be improved significantly.
文摘Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> employing nanoparticles perovskites solar cells in this work. CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> wafer-based hetero-junction solar cells were developed under atmospheric conditions using Graphite as a hole transport layer (HTL) and TiO<sub>2</sub> as an electron transport layer (ETL). In particular a considerable enhancement in power conversion efficiency (PCE < 0.01%) has been realized using optimum Graphene concentration (0.05 g/ml). The charge injection rate is radically faster for the particular Graphene composition than the pristine perovskites, which exposes ephemeral absorption in near to UV range. Graphene incorporation increased the average crystallite size and reduced the band gap 1.32 eV in the visible range. The expensive metals such as Ag and Au have been replaced by simple ITO, which tremendously reduces the fabrication cost of the PSCs. The fabricated devices were exposed to high conservation stability without cell encapsulation ambient condition for 150 days to show excellent stability.