A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding th...A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.展开更多
结合某220 k V变电站工程建设实例,对变电构架设计特点及荷载选取进行了论述,为满足不具备大型计算软件的中小设计院工程设计的实际需求,将变电构架空间结构简化为平面结构,采用手算加简单力学软件计算的方式进行220 k V变电构架的结构...结合某220 k V变电站工程建设实例,对变电构架设计特点及荷载选取进行了论述,为满足不具备大型计算软件的中小设计院工程设计的实际需求,将变电构架空间结构简化为平面结构,采用手算加简单力学软件计算的方式进行220 k V变电构架的结构计算及设计,以供参考。展开更多
基金funded by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(Grant No.2009HH0005).
文摘A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.