Miscanthus,is a promising bioenergy crop,considered superior to other bioenergy crops because of its higher water and nutrient use efficiency,cold tolerance,and higher production of biomass.Broadleaf weeds and grass w...Miscanthus,is a promising bioenergy crop,considered superior to other bioenergy crops because of its higher water and nutrient use efficiency,cold tolerance,and higher production of biomass.Broadleaf weeds and grass weeds,cause major problems in the Miscanthus field.A field experiment was conducted in 2018 and 2019,to assess the effects of pre-emergence(alachlor and napropamide)and post-emergence herbicides(nicosulfuron,dicamba,bentazon,and glufosinate ammonium)on broadleaf and grass weeds in M.sinensis and M.sacchariflorus fields.The weed control efficiency and phytotoxicity of pre-and post-emergence herbicides were evaluated at 30 days after treatment(DAT)and compared to those of the control plots.The results showed wide variations in the susceptibility of the weed species to the treated herbicides.Treatment with nicosulfuron 40 g.a.i.ha^(-1) provided the most effective overall weed control(with 10%visual injury),without affecting the height and biomass of neither Miscanthus species in the field.Post-emergence herbicides such as glufosinate ammonium 400 g.a.i.ha^(-1) and dicamba 482 g.a.i.ha^(-1) were effective and inhibited the growth and density of the majority of weeds to a 100%;however,they showed significant phytotoxicity(toxicity scale of 1-10)to both species of Miscanthus.The application of glufosinate ammonium caused severe injuries to the foliar region(90%visual injury)of both Miscanthus sps.Comparatively,M.sinensis showed a slightly higher tolerance to the herbicides nicosulfuron,bentazon and napropamide with 10%visual injury at the recommended dose than M.sacchariflorus.The present study clearly showed that infestation of broadleaf and grass weeds in Miscanthus fields can cause significant damage to the growth and biomass of Miscanthus and applying pre-emergence and post-emergence herbicides effectively controls the high infestation of these weeds.展开更多
There are a limited number of herbicides registered for weed management in white bean production in Ontario, Canada. Five field experiments were completed in Ontario from 2016 to 2018 to compare the efficacy of triflu...There are a limited number of herbicides registered for weed management in white bean production in Ontario, Canada. Five field experiments were completed in Ontario from 2016 to 2018 to compare the efficacy of trifluralin and ethalfluralin applied alone and in combination with halosulfuron, applied preplant incorporated (PPI), for weed control efficacy and white bean tolerance and seed yield. At 2 and 4 WAE, there was no white bean injury from the herbicide treatments evaluated. Trifluralin applied PPI provided up to 32%, 99%, 13%, 99%, 27%, 99% and 99% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin and ethalfluralin provide similar control of velvetleaf, redroot pigweed, barnyardgrass and green foxtail control, however, ethalfluralin is slightly more efficacious on common ragweed, common lambsquarters and wild mustard. Halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>), applied PPI, provided as much as 76%, 98%, 96%, 96%, 100%, 19% and 23% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin (600 or 1155 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>) + halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">展开更多
基金This work was supported by a BrainKorea21 Plus(BK21+,Grant No.22A20153813519,Team:Omics Research of Crop Bioresources for Future,Konkuk University),the National Research Foundation of Korea,Republic of Korea.
文摘Miscanthus,is a promising bioenergy crop,considered superior to other bioenergy crops because of its higher water and nutrient use efficiency,cold tolerance,and higher production of biomass.Broadleaf weeds and grass weeds,cause major problems in the Miscanthus field.A field experiment was conducted in 2018 and 2019,to assess the effects of pre-emergence(alachlor and napropamide)and post-emergence herbicides(nicosulfuron,dicamba,bentazon,and glufosinate ammonium)on broadleaf and grass weeds in M.sinensis and M.sacchariflorus fields.The weed control efficiency and phytotoxicity of pre-and post-emergence herbicides were evaluated at 30 days after treatment(DAT)and compared to those of the control plots.The results showed wide variations in the susceptibility of the weed species to the treated herbicides.Treatment with nicosulfuron 40 g.a.i.ha^(-1) provided the most effective overall weed control(with 10%visual injury),without affecting the height and biomass of neither Miscanthus species in the field.Post-emergence herbicides such as glufosinate ammonium 400 g.a.i.ha^(-1) and dicamba 482 g.a.i.ha^(-1) were effective and inhibited the growth and density of the majority of weeds to a 100%;however,they showed significant phytotoxicity(toxicity scale of 1-10)to both species of Miscanthus.The application of glufosinate ammonium caused severe injuries to the foliar region(90%visual injury)of both Miscanthus sps.Comparatively,M.sinensis showed a slightly higher tolerance to the herbicides nicosulfuron,bentazon and napropamide with 10%visual injury at the recommended dose than M.sacchariflorus.The present study clearly showed that infestation of broadleaf and grass weeds in Miscanthus fields can cause significant damage to the growth and biomass of Miscanthus and applying pre-emergence and post-emergence herbicides effectively controls the high infestation of these weeds.
文摘There are a limited number of herbicides registered for weed management in white bean production in Ontario, Canada. Five field experiments were completed in Ontario from 2016 to 2018 to compare the efficacy of trifluralin and ethalfluralin applied alone and in combination with halosulfuron, applied preplant incorporated (PPI), for weed control efficacy and white bean tolerance and seed yield. At 2 and 4 WAE, there was no white bean injury from the herbicide treatments evaluated. Trifluralin applied PPI provided up to 32%, 99%, 13%, 99%, 27%, 99% and 99% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin and ethalfluralin provide similar control of velvetleaf, redroot pigweed, barnyardgrass and green foxtail control, however, ethalfluralin is slightly more efficacious on common ragweed, common lambsquarters and wild mustard. Halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>), applied PPI, provided as much as 76%, 98%, 96%, 96%, 100%, 19% and 23% control of velvetleaf, redroot pigweed, common ragweed, common lambsquarters, wild mustard, barnyardgrass and green foxtail, respectively. Trifluralin (600 or 1155 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ai<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>) + halosulfuron (35 g<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">