The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)usin...The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)using heralded high-fidelity parity-check gate(HH-PCG),which can increase the entanglement of nonlocal two-photon polarization mixed state.The HH-PCG is constructed by the input-output process of nitrogen-vacancy(NV)center in diamond embedded in a single-sided optical cavity,where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector.As the unwanted components can be filtrated due to the heralded function,the fidelity of the EPP scheme can be enhanced considerably,which will increase the fidelity of quantum communication processing.展开更多
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11674033,11474026,11604226,and 11475021)Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China(Grant Nos.KM201710028005 and CIT&TCD201904080)
文摘The decoherence of entangled states caused by the noisy channel is a salient problem for reducing the fidelity of quantum communication.Here we present a heralded two-photon entanglement purification protocol(EPP)using heralded high-fidelity parity-check gate(HH-PCG),which can increase the entanglement of nonlocal two-photon polarization mixed state.The HH-PCG is constructed by the input-output process of nitrogen-vacancy(NV)center in diamond embedded in a single-sided optical cavity,where the errors caused by the imperfect interaction between the NV center-cavity system and the photon can be heralded by the photon detector.As the unwanted components can be filtrated due to the heralded function,the fidelity of the EPP scheme can be enhanced considerably,which will increase the fidelity of quantum communication processing.