期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
引入注意力机制的YOLOv5安全帽佩戴检测方法 被引量:61
1
作者 王玲敏 段军 辛立伟 《计算机工程与应用》 CSCD 北大核心 2022年第9期303-312,共10页
对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的... 对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意。将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求。 展开更多
关键词 安全帽佩戴检测 YOLOv5算法 加权双向特征金字塔 坐标注意力机制
下载PDF
改进YOLOv5s算法的安全帽佩戴检测 被引量:16
2
作者 宋晓凤 吴云军 +1 位作者 刘冰冰 张青林 《计算机工程与应用》 CSCD 北大核心 2023年第2期194-201,共8页
佩戴安全帽是施工过程中人员安全的重要保障之一,但现有的人工检测不仅耗时耗力而且无法做到实时监测,针对这一现象,提出了一种基于深度学习的安全帽佩戴检测算法。该算法以YOLOv5s网络为基础。在网络的主干网中引入CoordAtt坐标注意力... 佩戴安全帽是施工过程中人员安全的重要保障之一,但现有的人工检测不仅耗时耗力而且无法做到实时监测,针对这一现象,提出了一种基于深度学习的安全帽佩戴检测算法。该算法以YOLOv5s网络为基础。在网络的主干网中引入CoordAtt坐标注意力机制模块,考虑全局信息,使得网络分配给安全帽更多的注意力,以此提升对小目标的检测能力;针对原主干网对特征融合不充分的问题,将主干网中的残差块替换成Res2NetBlock结构中的残差块,以此提升YOLOv5s在细粒度上的融合能力。实验结果表明:在自制的安全帽数据集中验证可知,与原有的YOLOv5算法相比,平均精度提升了2.3个百分点,速度提升了18 FPS,与YOLOv3算法相比,平均精度提升了13.8个百分点,速度提升了95 FPS,实现了更准确的轻量高效实时的安全帽佩戴检测。 展开更多
关键词 安全帽佩戴检测 YOLOv5s CoordAtt Res2NetBlock
下载PDF
基于Swin Transformer的YOLOv5安全帽佩戴检测方法 被引量:12
3
作者 郑楚伟 林辉 《计算机测量与控制》 2023年第3期15-21,共7页
针对目前施工现场的安全帽检测方法存在遮挡目标检测难度大、误检漏检率高的问题,提出一种改进YOLOv5的安全帽检测方法;首先,使用K-means++聚类算法重新设计匹配安全帽数据集的先验锚框尺寸;其次,使用Swin Transformer作为YOLOv5的骨干... 针对目前施工现场的安全帽检测方法存在遮挡目标检测难度大、误检漏检率高的问题,提出一种改进YOLOv5的安全帽检测方法;首先,使用K-means++聚类算法重新设计匹配安全帽数据集的先验锚框尺寸;其次,使用Swin Transformer作为YOLOv5的骨干网络来提取特征,基于可移位窗口的Multi-head自注意力机制能建模不同空间位置特征之间的依赖关系,有效地捕获全局上下文信息,具有更好的特征提取能力;再次,提出C3-Ghost模块,基于Ghost Bottleneck对YOLOv5的C3模块进行改进,旨在通过低成本的操作生成更多有价值的冗余特征图,有效减少模型参数和计算复杂度;最后,基于双向特征金字塔网络跨尺度特征融合的结构优势提出新型跨尺度特征融合模块,更好地适应不同尺度的目标检测任务;实验结果表明,与原始YOLOv5相比,改进的YOLOv5在安全帽检测任务上的mAP@.5:.95指标提升了2.3%,检测速度达到每秒35.2帧,满足复杂施工场景下安全帽佩戴检测的准确率和实时性要求。 展开更多
关键词 安全帽佩戴检测 YOLOv5 Swin Transformer GHOST 新型跨尺度特征融合 K-means++
下载PDF
基于改进YOLOv3的头盔佩戴检测算法 被引量:16
4
作者 薛瑞晨 郝媛媛 +3 位作者 张振 黄训华 陆华丽 赵华 《电子测量技术》 北大核心 2021年第12期115-120,共6页
在城市交通中,时常出现电动车骑行者引发的安全事故。佩戴安全头盔可以有效地避免或降低安全事故带来的损害,因此目前多个城市已经颁布了佩戴安全头盔的相关法规。针对现有的安全头盔佩戴检测准确率低的问题,提出了一种基于改进YOLOv3... 在城市交通中,时常出现电动车骑行者引发的安全事故。佩戴安全头盔可以有效地避免或降低安全事故带来的损害,因此目前多个城市已经颁布了佩戴安全头盔的相关法规。针对现有的安全头盔佩戴检测准确率低的问题,提出了一种基于改进YOLOv3的安全头盔佩戴检测算法。该改进算法采取了通道和空间注意力模块的加权特征融合,并结合密集连接网络以提高特征提取的效果,并且引入了空间金字塔池化结构以增强特征。以收集的电动车头盔佩戴检测数据集测试和比较了改进后的性能,结果表明,所提出的改进算法平均检测精度达到93.29%,远高于原YOLOv3算法。实验表明,改进后的网络模型能显著提升电动自行车头盔佩戴情况的检测精度。 展开更多
关键词 计算机视觉 头盔佩戴检测 深度学习 改进YOLOv3
下载PDF
改进YOLOv3的复杂施工环境下安全帽佩戴检测算法 被引量:13
5
作者 赵红成 田秀霞 +1 位作者 杨泽森 白万荣 《中国安全科学学报》 CAS CSCD 北大核心 2022年第5期194-200,共7页
为解决施工场所环境复杂导致的智能监控下安全帽佩戴检测准确率低及漏检等问题,提出一种改进YOLOv3的安全帽佩戴检测算法。采用Focal Loss专注困难正样本训练,提高模型在复杂环境下的鲁棒性;在原始网络基础上使用空间金字塔多级池化融... 为解决施工场所环境复杂导致的智能监控下安全帽佩戴检测准确率低及漏检等问题,提出一种改进YOLOv3的安全帽佩戴检测算法。采用Focal Loss专注困难正样本训练,提高模型在复杂环境下的鲁棒性;在原始网络基础上使用空间金字塔多级池化融合局部与整体特征,提高多尺度检测能力;引入注意力机制,将通道和空间注意力模块分别集成到YOLOv3的主干网络和检测层的残差结构中,使模型专注于安全帽特征学习;使用GIoU提高定位准确率,在复杂施工环境不同视觉条件下验证算法的有效性。结果表明:改进模型的平均精度达到88%,较原始模型提高13.3%,其中person及helmet的精度分别提高17.2%、9.5%,召回率分别提高15.3%、7.6%。 展开更多
关键词 YOLOv3 复杂施工环境 安全帽佩戴 检测算法 Focal Loss 空间金字塔池化(SPP) 注意力机制 并集上的广义交集(GIoU)
下载PDF
基于改进YOLOv5的电动车头盔佩戴检测算法 被引量:5
6
作者 谢溥轩 崔金荣 赵敏 《计算机科学》 CSCD 北大核心 2023年第S01期410-415,共6页
在电动车交通事故中,颅脑损伤致死是电动车骑行人员死亡的主要原因,而大多数电动车骑行人员很少佩戴头盔,因此通过将目标检测算法与道路摄像头结合来监管电动车骑行者头盔佩戴情况具有很强的现实意义。针对目前电动车头盔佩戴检测存在... 在电动车交通事故中,颅脑损伤致死是电动车骑行人员死亡的主要原因,而大多数电动车骑行人员很少佩戴头盔,因此通过将目标检测算法与道路摄像头结合来监管电动车骑行者头盔佩戴情况具有很强的现实意义。针对目前电动车头盔佩戴检测存在着目标相互遮挡漏检率较高、较小目标漏检率较高的问题,文中提出了一种改进的YOLOv5目标检测算法,用于实现对电动车头盔佩戴情况的检测。该方法首先在YOLOv5网络中添加通道注意力机制ECA-Net,使得模型能够更快地检测到目标特征,从而提高模型的检测性能;其次,使用Bi-FPN加权双向特征金字塔模块,实现对不同层级特征重要性的平衡,有利于改进小目标漏检问题;最后,使用Alpha-CIoU Loss的损失函数,提高模型定位的准确性。实验结果表明,该方法在3种场景下对电动车骑行人员头盔佩戴情况的检测精度均高于其他模型,平均精度达到95.8%,相比原网络检测精度有所提升,实现了电动车头盔佩戴情况的高精度检测。 展开更多
关键词 深度学习 头盔佩戴检测 YOLOv5 Bi-FPN ECA-Net Alpha-CIoU
下载PDF
基于YOLO改进算法的安全帽和口罩佩戴自动同时检测 被引量:8
7
作者 孙世丹 郑佳春 +1 位作者 赵世佳 黄一琦 《集美大学学报(自然科学版)》 CAS 2021年第4期379-384,共6页
针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率。首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选... 针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率。首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选取更适合小目标检测的Anchor Box,以提高检测的平均精度和速度;然后,优化YOLO网络内部的Darknet特征网络层,将4倍降采样提取的特征图进行2倍上采样,再与2倍降采样进行卷积融合,与4倍降采样、8倍降采样以及16倍降采样一同输送到后续网络中,来达到降低小目标的漏检概率。实验结果表明:改进后的算法同时检测安全帽和口罩佩戴的平均准确率比原算法提高了11.3%。 展开更多
关键词 同时检测 YOLOv3算法 K-MEANS聚类 安全帽佩戴检测 口罩佩戴检测
下载PDF
基于深度学习的矿井下作业人员安全帽佩戴检测 被引量:8
8
作者 石永恒 杨超宇 《绥化学院学报》 2021年第9期148-152,共5页
文章基于深度学习方法来研究安全帽佩戴的检测方法,对自建安全帽数据集的预处理后,采用YOLO算法训练来获取一个最优检测模型;通过对模型测试,可以得到文章所使用的YOLO算法对矿井下安全帽佩戴检测能够达到一个比较好的检测精度,实际mAP... 文章基于深度学习方法来研究安全帽佩戴的检测方法,对自建安全帽数据集的预处理后,采用YOLO算法训练来获取一个最优检测模型;通过对模型测试,可以得到文章所使用的YOLO算法对矿井下安全帽佩戴检测能够达到一个比较好的检测精度,实际mAP值为90.68%,相较于其他单阶段检测算法来说有着更好的检测效果,更加符合实际运用的检测精度要求。 展开更多
关键词 深度学习 YOLO 安全帽佩戴 检测精度
下载PDF
基于STA-YOLOv5的水利建造人员安全帽佩戴检测算法 被引量:2
9
作者 李顺祥 蒋海洋 +5 位作者 熊伶 黄才生 蒋有高 邓曦 王楷 张鹏 《重庆大学学报》 CAS CSCD 北大核心 2023年第9期142-152,共11页
在大型水利建造工程现场,存在高空坠物、塔吊转动、墙体坍塌等问题,对于建造人员人身安全造成巨大威胁,佩戴安全帽是保护建造人员的有效措施,作为工程作业中的安全管理,对建造人员进行安全帽佩戴的精确检测很有必要。针对现有安全帽检... 在大型水利建造工程现场,存在高空坠物、塔吊转动、墙体坍塌等问题,对于建造人员人身安全造成巨大威胁,佩戴安全帽是保护建造人员的有效措施,作为工程作业中的安全管理,对建造人员进行安全帽佩戴的精确检测很有必要。针对现有安全帽检测算法在大型水利建造场景下对小且密集的安全帽目标存在漏检、检测精度较低等问题,提出一种基于STA-YOLOv5的安全帽佩戴检测算法,该算法将Swin Transformer和注意力机制引入到YOLOv5算法中,提高模型对安全帽的识别能力。实验结果表明,STA-YOLOv5算法具有更精确检测结果,识别准确率达到91.6%,较原有的YOLOv5算法有明显提升。 展开更多
关键词 水利建造 安全帽佩戴检测 STA-YOLOv5 Swin Transformer 注意力机制
下载PDF
基于自适应空间特征融合的YOLOv5安全帽检测系统设计 被引量:5
10
作者 郑楚伟 林辉 +2 位作者 吴晓明 刘孝炜 凌福龙 《机电工程技术》 2022年第9期37-42,共6页
在施工现场正确佩戴安全帽能有效地防止和减轻施工人员遭受头部伤害。目前在施工现场对安全帽佩戴的监管主要依赖人工,存在效率低且耗费人力的问题。对此,设计了基于改进YOLOv5的智能安防监控系统,实现安全帽佩戴检测和人员管理等功能... 在施工现场正确佩戴安全帽能有效地防止和减轻施工人员遭受头部伤害。目前在施工现场对安全帽佩戴的监管主要依赖人工,存在效率低且耗费人力的问题。对此,设计了基于改进YOLOv5的智能安防监控系统,实现安全帽佩戴检测和人员管理等功能。首先,使用改进的YOLOv5网络模型实现安全帽佩戴检测,通过自适应空间特征融合网络学习权重参数来决定输入特征图中各像素点的激活与抑制,充分利用不同尺度特征图在不同空间位置像素点的贡献度,以更好地适应不同尺度的目标检测任务。其次,使用百度智能云进行人脸识别,获取违规人员信息以生成违规通报,并上传到微信小程序,将违规行为记录存档,实现安全生产智能化管理。实验结果表明,相比原始YOLOv5,改进的YOLOv5在安全帽检测任务上的平均准确率提升0.5%。 展开更多
关键词 YOLOv5 自适应空间特征融合 安全帽佩戴检测 安防监控系统 人脸识别
下载PDF
基于增强特征融合网络的安全帽佩戴检测 被引量:1
11
作者 崔卓栋 陈玮 尹钟 《电子科技》 2023年第4期44-51,共8页
佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合... 佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合的角度对其进行了改进。该模型通过使用特征补充的方式减少了特征融合过程中的信息损失,并利用改进的特征金字塔及自适应空间融合模块提升了融合的效率,最终达到提升性能的目的。实验表明,文中改进的模型在安全帽佩戴数据集上的精确率达到83.03%,相较于未改进的模型有所提升,且模型大小没有明显增加。该模型在PASCAL VOC 2007上的精确率则达到了82.76%。 展开更多
关键词 安全帽佩戴检测 特征融合 特征金字塔 目标检测 EfficientDet 空间融合 深度学习 卷积神经网络
下载PDF
基于神经网络架构搜索的安全帽佩戴检测算法研究 被引量:4
12
作者 张瑢 周瑾 +1 位作者 焦雯 李坚 《铁道通信信号》 2022年第4期43-47,53,共6页
安全帽佩戴监控是铁路工程施工人员安全管理中的重点和难点,它对检测算法的准确率与检测速度都有较高的要求。本文提出一种基于神经网络架构搜索的安全帽佩戴检测算法NAS-YOLO。该神经网络架构由上、下行操作单元组成,采用二进制门策略... 安全帽佩戴监控是铁路工程施工人员安全管理中的重点和难点,它对检测算法的准确率与检测速度都有较高的要求。本文提出一种基于神经网络架构搜索的安全帽佩戴检测算法NAS-YOLO。该神经网络架构由上、下行操作单元组成,采用二进制门策略对网络架构进行更新,通过数据驱动的方式自动确定合适的神经网络体系结构。实验结果表明,NAS-YOLO算法在准确率、召回率及平均检测速度方面均优于实时目标检测算法YOLOv3,可以在工程施工中对施工人员安全帽佩戴情况进行实时监控。 展开更多
关键词 安全帽佩戴 神经网络架构搜索 自动检测 检测算法 实时监控
下载PDF
改进YOLOv4算法的安全帽检测 被引量:4
13
作者 李帅 李丽宏 +2 位作者 王素刚 田建艳 李济甫 《现代电子技术》 2022年第3期103-110,共8页
传统的人工巡检和查看监控检测安全帽佩戴的方法容易造成漏检、误检,因此提出一种基于改进YOLOv4算法的安全帽检测方法。首先,采用百度AI Studio平台的公开安全帽数据集和网络爬虫收集数据,自制安全帽佩戴情况数据集;再使用Mosaci、图... 传统的人工巡检和查看监控检测安全帽佩戴的方法容易造成漏检、误检,因此提出一种基于改进YOLOv4算法的安全帽检测方法。首先,采用百度AI Studio平台的公开安全帽数据集和网络爬虫收集数据,自制安全帽佩戴情况数据集;再使用Mosaci、图像翻转等多种数据增强算法丰富图像信息;引入K⁃means聚类更新锚框尺寸,空洞卷积扩大感受野和标签平滑防止模型过拟合,以提升中小物体检测性能。经实验验证,改进版YOLOv4算法较原始YOLOv4算法mAP提升了1.77%;与Faster RCNN相比mAP提升了4.13%,小物体目标检测效果mAP提升了12.71%,检测速度提升20倍。实例结果显示,改进版YOLOv4算法无漏检、误检情况,可准确检测出未佩戴安全帽的人员,有效减少了安全隐患。 展开更多
关键词 安全帽佩戴检测 改进YOLOv4算法 锚框尺寸更新 感受野 标签平滑 实验分析
下载PDF
融合迁移学习与YOLOv5的安全帽佩戴检测算法 被引量:1
14
作者 曹智雄 吴晓鸰 +1 位作者 骆晓伟 凌捷 《广东工业大学学报》 CAS 2023年第4期67-76,共10页
针对现有安全帽佩戴检测算法在检测小目标和密集目标时出现漏检、检测准确度低下等问题,本文提出一种基于改进YOLOv5和迁移学习的安全帽佩戴检测新方法。使用K-means算法聚类出更适合检测任务的先验框尺寸以解决默认先验框不适应任务的... 针对现有安全帽佩戴检测算法在检测小目标和密集目标时出现漏检、检测准确度低下等问题,本文提出一种基于改进YOLOv5和迁移学习的安全帽佩戴检测新方法。使用K-means算法聚类出更适合检测任务的先验框尺寸以解决默认先验框不适应任务的问题;在特征提取网络后段引入空间通道混合注意力模块,使模型加强对目标权重的学习,抑制无关背景的权重;改进YOLOv5后处理阶段的非极大值抑制(Non-Maximum-Suppression,NMS)算法的判断度量,减少预测框误删和缺失的现象;采用迁移学习的策略对网络进行训练,克服现有数据集不足的缺陷并提升模型泛化能力;最后提出一种适用于视觉传感网络的安全帽佩戴级联判断框架。实验结果表明改进模型的平均准确率(IOU=0.5)达到了93.6%,与原始模型相比提高了5%,性能优于其他同类算法,提高了施工场景下对安全帽佩戴检测的准确率。 展开更多
关键词 安全帽佩戴检测 YOLOv5 迁移学习 注意力机制 视觉传感器网络
下载PDF
改进YOLOv3的实时性视频安全帽佩戴检测算法 被引量:4
15
作者 黄林泉 蒋良卫 高晓峰 《现代计算机》 2020年第30期32-38,43,共8页
生产安全事故频繁发生,佩戴安全帽可以有效避免人员伤亡。提出一种在自然场景下是否佩戴安全帽的检测方法,对YOLOv3算法进行改进。使用ResNeXt50作为新的特征提取网络结合CSP Net中的梯度分流截断思想提高算法的特征表达能力,融合SPP Ne... 生产安全事故频繁发生,佩戴安全帽可以有效避免人员伤亡。提出一种在自然场景下是否佩戴安全帽的检测方法,对YOLOv3算法进行改进。使用ResNeXt50作为新的特征提取网络结合CSP Net中的梯度分流截断思想提高算法的特征表达能力,融合SPP Net和PA Net提高算法特征融合的质量,使用CIoU优化损失函数。并且结合DeepSort目标跟踪技术提高算法实时性。在SHMD安全帽数据集上进行验证,算法平均准确率达到96.80%,较原算法提升12%,且运行速率达到32帧/s。在多种场景下,都具有较好的检测效果。 展开更多
关键词 安全帽佩戴检测 残差网络 特征融合 目标跟踪 实时
下载PDF
基于YOLO v3的变电站作业安全帽佩戴识别 被引量:3
16
作者 黄虎 王青云 周琦 《南京工程学院学报(自然科学版)》 2020年第3期37-41,共5页
为了自动监测作业人员是否正确佩戴安全帽,保证变电站内安全作业,提出一种基于YOLO v3算法的安全帽佩戴检测方法.首先构建作业人员检测和安全帽检测的级联网络,然后将级联网络检测到的候选边框进行安全帽区域预估,最后将安全帽预估区域... 为了自动监测作业人员是否正确佩戴安全帽,保证变电站内安全作业,提出一种基于YOLO v3算法的安全帽佩戴检测方法.首先构建作业人员检测和安全帽检测的级联网络,然后将级联网络检测到的候选边框进行安全帽区域预估,最后将安全帽预估区域输入至安全帽检测网络中,检测是否正确佩戴安全帽.通过在测试集上验证,该检测方法识别准确率达到91.2%,有效地提高了对违章行为的管控效果. 展开更多
关键词 YOLO v3 安全帽佩戴 目标检测
下载PDF
基于改进SSD的头盔佩戴检测模型
17
作者 卢云聪 《信息与电脑》 2022年第16期14-16,共3页
《郑州市非机动车管理办法》中规定,电动车骑乘人员不戴头盔,处以警告或者罚款。但由于河南省郑州市的电动车数量庞大,交警部门很难确保该办法能够顺利实施。针对该问题,基于特征金字塔网络对传统单镜头多盒检测器(Single Shot Multibox... 《郑州市非机动车管理办法》中规定,电动车骑乘人员不戴头盔,处以警告或者罚款。但由于河南省郑州市的电动车数量庞大,交警部门很难确保该办法能够顺利实施。针对该问题,基于特征金字塔网络对传统单镜头多盒检测器(Single Shot Multibox Detector,SSD)模型进行改进,以改进模型为基础搭建了头盔佩戴检测模型,通过该模型来帮助交警部门提升工作效率。最终测试结果显示,该模型与传统SSD模型及YOLOV5模型相比,其识别准确率分别提升9.84%和2.09%。 展开更多
关键词 特征金字塔网络 改进SSD模型 头盔佩戴检测
下载PDF
改进YOLO v3的安全帽佩戴检测方法 被引量:101
18
作者 施辉 陈先桥 杨英 《计算机工程与应用》 CSCD 北大核心 2019年第11期213-220,共8页
在生产和作业场地中,工人由于不佩戴安全帽而引发的安全事故时有发生。为了降低由于未佩戴安全帽而引发的安全事故发生率,提出了一种基于改进YOLO v3算法的安全帽佩戴检测方法。通过采用图像金字塔结构获取不同尺度的特征图,用于位置和... 在生产和作业场地中,工人由于不佩戴安全帽而引发的安全事故时有发生。为了降低由于未佩戴安全帽而引发的安全事故发生率,提出了一种基于改进YOLO v3算法的安全帽佩戴检测方法。通过采用图像金字塔结构获取不同尺度的特征图,用于位置和类别预测;使用施工现场出入口监控视频作为数据集进行目标框维度聚类,确定目标框参数;在训练迭代过程中改变输入图像的尺寸,增加模型对尺度的适应性。理论分析和实验结果表明,在安全帽佩戴检测任务中,mAP(Mean Average Precision)达到了92.13%,检测速率提高到62 f/s,其检测准确率与检测速率相较于YOLO v3均略有提高,所提算法不仅满足安全帽佩戴检测中检测任务的实时性,同时具有较高的检测准确率。 展开更多
关键词 图像处理 深度学习 YOLO V3 安全帽佩戴检测
下载PDF
基于改进Faster RCNN的安全帽佩戴检测研究 被引量:63
19
作者 徐守坤 王雅如 +3 位作者 顾玉宛 李宁 庄丽华 石林 《计算机应用研究》 CSCD 北大核心 2020年第3期901-905,共5页
针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目... 针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目标的鲁棒性,并引入防止正负样本不均衡的在线困难样本挖掘策略,然后对检测出的佩戴安全帽工人和安全帽等采用多部件结合方法剔除误检目标。实验表明,相比于原始Faster RCNN,检测准确率提高了7%,对环境的适应性更强。 展开更多
关键词 安全帽佩戴检测 FASTER RCNN 多尺度训练 在线困难样本挖掘 多部件结合
下载PDF
基于改进YOLOv5的安全帽佩戴检测算法 被引量:44
20
作者 张锦 屈佩琪 +1 位作者 孙程 罗蒙 《计算机应用》 CSCD 北大核心 2022年第4期1292-1300,共9页
针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道... 针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。 展开更多
关键词 安全帽佩戴检测 目标检测 深度学习 YOLOv5 注意力机制
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部