Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the ...Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the Pb-Zn deposit hosted in sedimentary rocks, such as Mississippian Valley-, Sedex- and sandstone-type Pb-Zn deposits. However, the Lanping basin developed in the settings of strong tectonic activity of the continental crust, which could cause an effective material exchange between the lower crust and the upper mantle. The orebodies are clearly tectonically controlled without syngenetic features, which probably represents a new type of the sedimentary rock-hosted Pb-Zn deposit. The isotopic compositions of noble gases in ore-forming fluids indicate that 2%32% of helium (3He/4He = 0.19 Ra1.97 Ra) is derived from the mantle, 50.1% of neon (20Ne/22Ne = 10.4510.83; 21Ne/22Ne = 0.03) from the mantle, and considerable amount of xenon (129Xe/130Xe = 5.846.86; 134Xe/130Xe = 2.262.71) from the mantle, which show that mantle fluids played an important role in the ore formation. The ore-forming age of 6760 Ma obtained by Re-Os and 40Ar-39Ar dating methods is later than the host rock, which is coeval with the Himalayan alkali magmatism of the mantle source and mantle-crust source. In this paper, the mineralization of the Jinding and Baiyangping ore deposits is considered to be related to the mantle fluids which move upward with the magma or along the deep faults, and mix with the meteoritic brine in the crust to result in large-scale deposition.展开更多
The ophiolites from the Yarlung Zangbo River (Tibet), Southwestern China, were analysed for the contents of helium and neon and their isotopic compositions by stepwise heating. The serpentinites from Bainang showed a ...The ophiolites from the Yarlung Zangbo River (Tibet), Southwestern China, were analysed for the contents of helium and neon and their isotopic compositions by stepwise heating. The serpentinites from Bainang showed a high 3He/4He value of 32.66R a (R a is referred to the 3He/4He ratio in the present air) in 700°C fraction. At lower temperature, all of the dolerites displayed as very high 3He/4He ratios as ones investigated for hotspots. It was clear that the high 3He/4He ratio was one of immanent characterics in the magma source formed the dolerites, suggesting that there was a large amount of deep mantle fluids in these rocks. In the three-isotope diagram of neon, the data points from the ophiolites of the Yarlung Zangbo River were arranged along the Loihi Line. This is in agreement with the characteristics of helium isotopes, revealing that the high-3He plume from deep mantle had played an important role in the formation of the Neo-Tethyan Ocean. The helium isotopic compositions in the basalts were far higher than atomospheric value but lower than the average value of MORB, although there were various degrees of alteration. The possible reasons were that basaltic magmas had been contaminated by crust-derived fluids.展开更多
基金Major State Basic Research Program(Grant No.G1999043201) State Scie nces Fund Program(Grant No.40272050).
文摘Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the Pb-Zn deposit hosted in sedimentary rocks, such as Mississippian Valley-, Sedex- and sandstone-type Pb-Zn deposits. However, the Lanping basin developed in the settings of strong tectonic activity of the continental crust, which could cause an effective material exchange between the lower crust and the upper mantle. The orebodies are clearly tectonically controlled without syngenetic features, which probably represents a new type of the sedimentary rock-hosted Pb-Zn deposit. The isotopic compositions of noble gases in ore-forming fluids indicate that 2%32% of helium (3He/4He = 0.19 Ra1.97 Ra) is derived from the mantle, 50.1% of neon (20Ne/22Ne = 10.4510.83; 21Ne/22Ne = 0.03) from the mantle, and considerable amount of xenon (129Xe/130Xe = 5.846.86; 134Xe/130Xe = 2.262.71) from the mantle, which show that mantle fluids played an important role in the ore formation. The ore-forming age of 6760 Ma obtained by Re-Os and 40Ar-39Ar dating methods is later than the host rock, which is coeval with the Himalayan alkali magmatism of the mantle source and mantle-crust source. In this paper, the mineralization of the Jinding and Baiyangping ore deposits is considered to be related to the mantle fluids which move upward with the magma or along the deep faults, and mix with the meteoritic brine in the crust to result in large-scale deposition.
基金the National Natural Science Foundation of China (Grant Nos. 40573012 and 40273009)the West Light (the Talent Training Plans) of CAS
文摘The ophiolites from the Yarlung Zangbo River (Tibet), Southwestern China, were analysed for the contents of helium and neon and their isotopic compositions by stepwise heating. The serpentinites from Bainang showed a high 3He/4He value of 32.66R a (R a is referred to the 3He/4He ratio in the present air) in 700°C fraction. At lower temperature, all of the dolerites displayed as very high 3He/4He ratios as ones investigated for hotspots. It was clear that the high 3He/4He ratio was one of immanent characterics in the magma source formed the dolerites, suggesting that there was a large amount of deep mantle fluids in these rocks. In the three-isotope diagram of neon, the data points from the ophiolites of the Yarlung Zangbo River were arranged along the Loihi Line. This is in agreement with the characteristics of helium isotopes, revealing that the high-3He plume from deep mantle had played an important role in the formation of the Neo-Tethyan Ocean. The helium isotopic compositions in the basalts were far higher than atomospheric value but lower than the average value of MORB, although there were various degrees of alteration. The possible reasons were that basaltic magmas had been contaminated by crust-derived fluids.