The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal componen... The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.展开更多
The experimental observation indicates that the branching ratio of ψ'→ρπ is very small while the ρ-π channel is a main one in J/ψ decays. To understand the puzzle, various interpretations have been proposed. M...The experimental observation indicates that the branching ratio of ψ'→ρπ is very small while the ρ-π channel is a main one in J/ψ decays. To understand the puzzle, various interpretations have been proposed. Meanwhile according to the hadronic helicity selection rule, this decay mode should be suppressed. Numerical calculations are needed to determine how it is suppressed. We calculate the branching ratios of J/ψ→ρπ and ππ in the framework of QCD. The results show that the branching ratios are proportional to (mu+md/MJ/ψ)^2 for the ρπ mode and (mu-md/MJ/ψ)^2 for the ππ mode which is isospin violated. The theoretical prediction of the ratio of J/ ψ→ρπ is smaller than data, but not too small to invoke a completely new mechanism. Thus the puzzle is still standing even though we learn much knowledge towards the puzzle and this will help to finally interpret the puzzle and then gain a deeper insight to the heavy quarkonia.展开更多
基金sponsored by the National Natural Science Foundation of China under Grant No.400750112001 PIA 20026 the National Key program for Developing Basic Sciences:CHeRES(G 1998040907).
文摘 The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.
基金Supported by National Natural Science Foundation of ChinaSpecial Fund of Education Ministry of China for the PhD Programs
文摘The experimental observation indicates that the branching ratio of ψ'→ρπ is very small while the ρ-π channel is a main one in J/ψ decays. To understand the puzzle, various interpretations have been proposed. Meanwhile according to the hadronic helicity selection rule, this decay mode should be suppressed. Numerical calculations are needed to determine how it is suppressed. We calculate the branching ratios of J/ψ→ρπ and ππ in the framework of QCD. The results show that the branching ratios are proportional to (mu+md/MJ/ψ)^2 for the ρπ mode and (mu-md/MJ/ψ)^2 for the ππ mode which is isospin violated. The theoretical prediction of the ratio of J/ ψ→ρπ is smaller than data, but not too small to invoke a completely new mechanism. Thus the puzzle is still standing even though we learn much knowledge towards the puzzle and this will help to finally interpret the puzzle and then gain a deeper insight to the heavy quarkonia.