Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a te...Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a test bench,which could simulate the real-world operations and emissions of ocean-going ships.The chemical compositions,emission factors(EFs)and volatility distributions of IVOC emissions were investigated.The results showed that the main engine burning HFO emitted a large amount of IVOCs,with average IVOC EFs of 20.2-201 mg/kg-fuel.The IVOCs were mainly comprised of unspeciated compounds.The chemical compositions of exhaust IVOCs were different from that of HFO fuel,especially for polycyclic aromatic compounds and alkylcyclohexanes.The volatility distributions of IVOCs were also different between HFO exhausts and HFO fuel.The distinctions in IVOC emission characteristics between HFO exhausts and HFO fuel should be considered when assessing the IVOC emission and related SOA formation potentials from ocean-going ships burning HFO,especially when using fuel-surrogate models.展开更多
Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,f...Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.展开更多
Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 49...Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.展开更多
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
基金supported by the National Natural Science Foundation of China (Nos. 41403084 and 4171101108)the Project from Shanghai Committee of Science and Technology (No. 16ZR1414800
文摘Intermediate volatility organic compounds(IVOCs)are crucial precursors of secondary organic aerosol(SOA).In this study,gaseous IVOCs emitted from a ship main engine burning heavy fuel oil(HFO)were investigated on a test bench,which could simulate the real-world operations and emissions of ocean-going ships.The chemical compositions,emission factors(EFs)and volatility distributions of IVOC emissions were investigated.The results showed that the main engine burning HFO emitted a large amount of IVOCs,with average IVOC EFs of 20.2-201 mg/kg-fuel.The IVOCs were mainly comprised of unspeciated compounds.The chemical compositions of exhaust IVOCs were different from that of HFO fuel,especially for polycyclic aromatic compounds and alkylcyclohexanes.The volatility distributions of IVOCs were also different between HFO exhausts and HFO fuel.The distinctions in IVOC emission characteristics between HFO exhausts and HFO fuel should be considered when assessing the IVOC emission and related SOA formation potentials from ocean-going ships burning HFO,especially when using fuel-surrogate models.
文摘Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.
文摘Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.