This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to N...This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature(SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west-east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall.The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness.Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing.展开更多
基金supported by the National Key Basic Research Program of China (Grant No. 2014CB953902)the National Natural Science Foundation of China (Grant Nos. 41530425, 41275081 and 41475081)
文摘This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature(SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west-east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall.The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness.Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing.