In this paper, the physical basis and application conditions of the entransy theory are reviewed and discussed. Entransy can be obtained from the analogy between heat and electrical conductions. It is a state value an...In this paper, the physical basis and application conditions of the entransy theory are reviewed and discussed. Entransy can be obtained from the analogy between heat and electrical conductions. It is a state value and the‘‘potential energy'' of heat. From the viewpoint of thermomass, it reflects the thermal energy of the thermomass in an object. Furthermore, it was also related to the microstate number and is a single value function of the microstate number. The concepts of entransy, entransy flux and entransy dissipation can be used to express the least action of heat transfer. The entransy balance equations for heat transfer and thermodynamic processes and their applications to thermal systems are also reviewed. The differences between the entransy theory, constructal theory, entropy generation minimization, exergy analyses method, principle of uniformity of temperature difference field and field synergy(coordination) principle are also discussed. The entransy theory is different from the other discussed theories. The limitations of the entransy theory are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(51376101)
文摘In this paper, the physical basis and application conditions of the entransy theory are reviewed and discussed. Entransy can be obtained from the analogy between heat and electrical conductions. It is a state value and the‘‘potential energy'' of heat. From the viewpoint of thermomass, it reflects the thermal energy of the thermomass in an object. Furthermore, it was also related to the microstate number and is a single value function of the microstate number. The concepts of entransy, entransy flux and entransy dissipation can be used to express the least action of heat transfer. The entransy balance equations for heat transfer and thermodynamic processes and their applications to thermal systems are also reviewed. The differences between the entransy theory, constructal theory, entropy generation minimization, exergy analyses method, principle of uniformity of temperature difference field and field synergy(coordination) principle are also discussed. The entransy theory is different from the other discussed theories. The limitations of the entransy theory are also discussed.