An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are relate...An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are related to fully developed convective heat transfer under constant heat flux at the duct walls.The separation of variables method and various other mathematical techniques are used to find the closed form of the temperature distribution.The local and mean Nusselt numbers are also obtained as functions of the aspect ratio.A new physical constraint is presented to solve the Neumann problem in non-dimensional analysis for the H2 boundary conditions.This is one of the major innovations of the current study.The analytical results indicate a singularity occurs at a critical aspect ratio of 2.4912 when calculating the local and mean Nusselt numbers.展开更多
基金Project supported by the Shahrood University of Technology (No. 17024),Iran
文摘An exact analytical solution is obtained for convective heat transfer in straight ducts with rectangular cross-sections for the first time.This solution is valid for both H1 and H2 boundary conditions,which are related to fully developed convective heat transfer under constant heat flux at the duct walls.The separation of variables method and various other mathematical techniques are used to find the closed form of the temperature distribution.The local and mean Nusselt numbers are also obtained as functions of the aspect ratio.A new physical constraint is presented to solve the Neumann problem in non-dimensional analysis for the H2 boundary conditions.This is one of the major innovations of the current study.The analytical results indicate a singularity occurs at a critical aspect ratio of 2.4912 when calculating the local and mean Nusselt numbers.