Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a f...Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.展开更多
基金financially supported by the National Natural Science Foundation of China (21203236)Shenzhen Peacock Plan (KQCX2015033117354154)+1 种基金Shenzhen basic research plan (JCYJ2015052114432090)the Science & Technology Project of Educational Commission of Jiangxi Province, China (GJJ161198)
文摘Effective heat dissipation is a crucial issue in electrochemical energy storage devices. Thus, it is highly desirable to develop high-performance electrode materials with high thermal conductivity. Here, we report a facile one-step electrodeposition method to synthesize ternary cobalt nickel sulfide(CoNi2S4)flower-like nanosheets which are grown on graphite foil(GF) as binder-free electrode materials for supercapacitors. The as-fabricated GF/CoNi2S4 integrated electrode manifested an excellent thermal conductivity of 620.1 W·m-1·K-1 and a high specific capacitance of 881 F·g-2 at 5 mA cm-2, as well as good rate capability and cycling stability. Ultimately, the all-solid-state symmetric supercapacitor based on these advanced electrodes demonstrated superior heat dissipation performance during the galvanostatic charge-discharge processes. This novel strategy provides a new example of effective thermal management for potential applications in energy storage devices.