<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process...<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be pr展开更多
In today’s digital era,e-healthcare systems exploit digital technologies and telecommunication devices such as mobile devices,computers and the inter-net to provide high-quality healthcare services.E-healthcare decis...In today’s digital era,e-healthcare systems exploit digital technologies and telecommunication devices such as mobile devices,computers and the inter-net to provide high-quality healthcare services.E-healthcare decision support sys-tems have been developed to optimize the healthcare services and enhance a patient’s health.These systems enable rapid access to the specialized healthcare services via reliable information,retrieved from the cases or the patient histories.This phenomenon reduces the time taken by the patients to physically visit the healthcare institutions.In the current research work,a new Shuffled Frog Leap Optimizer with Deep Learning-based Decision Support System(SFLODL-DSS)is designed for the diagnosis of the Cardiovascular Diseases(CVD).The aim of the proposed model is to identify and classify the cardiovascular diseases.The proposed SFLODL-DSS technique primarily incorporates the SFLO-based Feature Selection(SFLO-FS)approach for feature subset election.For the pur-pose of classification,the Autoencoder with Gated Recurrent Unit(AEGRU)model is exploited.Finally,the Bacterial Foraging Optimization(BFO)algorithm is employed tofine-tune the hyperparameters involved in the AEGRU method.To demonstrate the enhanced performance of the proposed SFLODL-DSS technique,a series of simulations was conducted.The simulation outcomes established the superiority of the proposed SFLODL-DSS technique as it achieved the highest accuracy of 98.36%.Thus,the proposed SFLODL-DSS technique can be exploited as a proficient tool in the future for the detection and classification of CVD.展开更多
In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e...In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.展开更多
文摘<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be pr
文摘In today’s digital era,e-healthcare systems exploit digital technologies and telecommunication devices such as mobile devices,computers and the inter-net to provide high-quality healthcare services.E-healthcare decision support sys-tems have been developed to optimize the healthcare services and enhance a patient’s health.These systems enable rapid access to the specialized healthcare services via reliable information,retrieved from the cases or the patient histories.This phenomenon reduces the time taken by the patients to physically visit the healthcare institutions.In the current research work,a new Shuffled Frog Leap Optimizer with Deep Learning-based Decision Support System(SFLODL-DSS)is designed for the diagnosis of the Cardiovascular Diseases(CVD).The aim of the proposed model is to identify and classify the cardiovascular diseases.The proposed SFLODL-DSS technique primarily incorporates the SFLO-based Feature Selection(SFLO-FS)approach for feature subset election.For the pur-pose of classification,the Autoencoder with Gated Recurrent Unit(AEGRU)model is exploited.Finally,the Bacterial Foraging Optimization(BFO)algorithm is employed tofine-tune the hyperparameters involved in the AEGRU method.To demonstrate the enhanced performance of the proposed SFLODL-DSS technique,a series of simulations was conducted.The simulation outcomes established the superiority of the proposed SFLODL-DSS technique as it achieved the highest accuracy of 98.36%.Thus,the proposed SFLODL-DSS technique can be exploited as a proficient tool in the future for the detection and classification of CVD.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR26).
文摘In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.