At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in p...At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in power systems to reduce peak demands for deferring or avoiding augmentation in the network and power generation.As the battery cost is still very high at present,a comprehensive assessment is necessary to determine the optimum ESS capacity so that the maximum financial gain is achievable at the end of the batteries’lifespan.Therefore,an effective life-cycle assessment is proposed in this paper to show how the optimum ESS capacity can be determined such that the maximum net financial gain is achievable at the end of the batteries’lifespan when ESS is used to perform peak demand reductions for the customer or utility companies.The findings reveal the positive financial viability of ESS on the power grid,otherwise the projection of the financial viability is often seemingly poor due to the high battery cost with a short battery lifespan.An improved battery degradation model is used in this assessment,which can simulate the battery degradation accurately in a situation whereby the charging current,discharging current,and temperature of the batteries are intermittent on a site during peak demand reductions.This assessment is crucial to determine the maximum financial benefits brought by ESS.展开更多
准确估计锂离子电池荷电状态(state of charge,SOC)、电池健康度(state of health,SOH)以及预测电池剩余寿命(remaining useful life,RUL)是电池管理的重要内容,对延长电池寿命和保证电池系统可靠性具有重要意义。各国研究人员对电池状...准确估计锂离子电池荷电状态(state of charge,SOC)、电池健康度(state of health,SOH)以及预测电池剩余寿命(remaining useful life,RUL)是电池管理的重要内容,对延长电池寿命和保证电池系统可靠性具有重要意义。各国研究人员对电池状态评估与寿命预测方法进行了大量研究,提出了多种方法。首先,介绍了SOC与SOH的定义及已有估算方法,并进行了对比;然后,介绍了RUL的定义,并对主要方法进行了分类与比较;最后,总结了锂离子电池状态估计与寿命预测方面存在的挑战,并提出了未来的发展方向。展开更多
为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电...为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电池循环寿命测试数据,利用恒流充电阶段电池电压曲线对SOH进行估计,并与试验数据进行了对比,在SOH值衰减至80%之前,SOH估计的相对误差均在±2%范围内,能较好地吻合试验结果.结果表明:所提出的估计方法具有可行性和精确性.展开更多
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e...Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.展开更多
对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲...对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲线峰值高度ICP(peak of incremental capacity curve)作为健康特征HF(health factor),数学推导出ICP与健康状态的强相关性。结合卡尔曼滤波算法提取光滑的容量增量曲线。将电池容量衰退过程的前部分周期作为训练周期,通过Box-Cox变换将训练周期的ICP和SOH序列变换成线性关系,然后通过线性拟合来实现剩余周期的SOH估计。在Oxford和NASA数据集上进行实验验证,并与机器学习算法进行对比,结果表明所提方法具有较高的估计精度、较短的计算时间和较强的鲁棒性。展开更多
文摘At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in power systems to reduce peak demands for deferring or avoiding augmentation in the network and power generation.As the battery cost is still very high at present,a comprehensive assessment is necessary to determine the optimum ESS capacity so that the maximum financial gain is achievable at the end of the batteries’lifespan.Therefore,an effective life-cycle assessment is proposed in this paper to show how the optimum ESS capacity can be determined such that the maximum net financial gain is achievable at the end of the batteries’lifespan when ESS is used to perform peak demand reductions for the customer or utility companies.The findings reveal the positive financial viability of ESS on the power grid,otherwise the projection of the financial viability is often seemingly poor due to the high battery cost with a short battery lifespan.An improved battery degradation model is used in this assessment,which can simulate the battery degradation accurately in a situation whereby the charging current,discharging current,and temperature of the batteries are intermittent on a site during peak demand reductions.This assessment is crucial to determine the maximum financial benefits brought by ESS.
文摘准确估计锂离子电池荷电状态(state of charge,SOC)、电池健康度(state of health,SOH)以及预测电池剩余寿命(remaining useful life,RUL)是电池管理的重要内容,对延长电池寿命和保证电池系统可靠性具有重要意义。各国研究人员对电池状态评估与寿命预测方法进行了大量研究,提出了多种方法。首先,介绍了SOC与SOH的定义及已有估算方法,并进行了对比;然后,介绍了RUL的定义,并对主要方法进行了分类与比较;最后,总结了锂离子电池状态估计与寿命预测方面存在的挑战,并提出了未来的发展方向。
文摘为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电池循环寿命测试数据,利用恒流充电阶段电池电压曲线对SOH进行估计,并与试验数据进行了对比,在SOH值衰减至80%之前,SOH估计的相对误差均在±2%范围内,能较好地吻合试验结果.结果表明:所提出的估计方法具有可行性和精确性.
文摘Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model.
文摘对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲线峰值高度ICP(peak of incremental capacity curve)作为健康特征HF(health factor),数学推导出ICP与健康状态的强相关性。结合卡尔曼滤波算法提取光滑的容量增量曲线。将电池容量衰退过程的前部分周期作为训练周期,通过Box-Cox变换将训练周期的ICP和SOH序列变换成线性关系,然后通过线性拟合来实现剩余周期的SOH估计。在Oxford和NASA数据集上进行实验验证,并与机器学习算法进行对比,结果表明所提方法具有较高的估计精度、较短的计算时间和较强的鲁棒性。