有限元法(finite element method,FEM)是随着电子计算机的发展而迅速发展起来的一种数值分析方法,同时也是一种比较先进的生物力学研究方法。FEM早期应用于工程科学技术领域,近几年来,生物医学工程领域已经广泛应用FEM进行脑方面的研究...有限元法(finite element method,FEM)是随着电子计算机的发展而迅速发展起来的一种数值分析方法,同时也是一种比较先进的生物力学研究方法。FEM早期应用于工程科学技术领域,近几年来,生物医学工程领域已经广泛应用FEM进行脑方面的研究。随着交通、运输业的发展,颅脑损伤发生的概率越来越高,严重威胁着人类的身体健康。通过建立颅脑有限元模型,可以很好地研究颅脑损伤的生物力学机制。总结颅脑有限元模型的建立、发展和应用,并对未来的研究方向进行展望。展开更多
爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该...爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造;利用该模型对人体头部碰撞实验进行数值模拟,模拟结果与实验结果吻合良好,验证了头部模型的有效性。在此基础上,基于欧拉-拉格朗日耦合(EulerLagrangian coupling method,CEL)方法发展了爆炸冲击波-头部流固耦合模型,对头部受到爆炸冲击波正面冲击工况进行了数值模拟,分别从流场压力分布、脑组织压力、颅骨变形与加速度等方面对头部动态响应过程进行了分析。爆炸冲击波峰值压力在流固耦合作用下增大为入射波的3.5倍,致使受到直接冲击处的颅骨与脑组织发生高频振动,相应的振动频率高达8 k Hz,这与碰撞载荷下的脑组织动态响应是完全不同的。同时,该处颅骨的局部弯曲变形会沿着颅骨进行"传播",影响着整个颅骨的变化构型,从而决定了脑组织压力与损伤的演化过程。展开更多
文摘有限元法(finite element method,FEM)是随着电子计算机的发展而迅速发展起来的一种数值分析方法,同时也是一种比较先进的生物力学研究方法。FEM早期应用于工程科学技术领域,近几年来,生物医学工程领域已经广泛应用FEM进行脑方面的研究。随着交通、运输业的发展,颅脑损伤发生的概率越来越高,严重威胁着人类的身体健康。通过建立颅脑有限元模型,可以很好地研究颅脑损伤的生物力学机制。总结颅脑有限元模型的建立、发展和应用,并对未来的研究方向进行展望。
文摘爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造;利用该模型对人体头部碰撞实验进行数值模拟,模拟结果与实验结果吻合良好,验证了头部模型的有效性。在此基础上,基于欧拉-拉格朗日耦合(EulerLagrangian coupling method,CEL)方法发展了爆炸冲击波-头部流固耦合模型,对头部受到爆炸冲击波正面冲击工况进行了数值模拟,分别从流场压力分布、脑组织压力、颅骨变形与加速度等方面对头部动态响应过程进行了分析。爆炸冲击波峰值压力在流固耦合作用下增大为入射波的3.5倍,致使受到直接冲击处的颅骨与脑组织发生高频振动,相应的振动频率高达8 k Hz,这与碰撞载荷下的脑组织动态响应是完全不同的。同时,该处颅骨的局部弯曲变形会沿着颅骨进行"传播",影响着整个颅骨的变化构型,从而决定了脑组织压力与损伤的演化过程。