期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
困难样本采样联合对比增强的深度图聚类 被引量:1
1
作者 朱玄烨 孔兵 +2 位作者 陈红梅 包崇明 周丽华 《计算机应用研究》 CSCD 北大核心 2024年第6期1769-1777,共9页
针对困难样本挖掘的图聚类算法是最近的研究热点,目前算法存在的主要问题有:对比方法和样本对加权策略缺少良好的融合机制;采样正样本时忽略了视图内部的“假阴性”样本;忽视图级信息对聚类的帮助。针对上述问题,提出困难样本采样联合... 针对困难样本挖掘的图聚类算法是最近的研究热点,目前算法存在的主要问题有:对比方法和样本对加权策略缺少良好的融合机制;采样正样本时忽略了视图内部的“假阴性”样本;忽视图级信息对聚类的帮助。针对上述问题,提出困难样本采样联合对比增强的图聚类算法。首先使用自编码器学习嵌入,根据计算的伪标签、相似度、置信度信息为表示学习设计一种自加权对比损失,统一不同视图下节点对比和困难样本对加权策略。通过调整不同置信区域样本对的权重,损失函数驱动模型关注不同类型的困难样本以学习有区分性的特征,提高簇内表示的一致性和簇间表示的差异性,增强对样本的判别能力。其次,图级表示经聚类网络投影,通过聚类对比损失最大化不同视图下聚类的表示一致性。最后联合两种对比损失,利用自监督训练机制进行迭代优化,完成聚类任务。该算法在5个真实数据集上与9个基准聚类算法对比,在4个权威指标上达到最优,聚类性能出色。消融实验表明两个对比模块的有效性和可迁移性。 展开更多
关键词 图表示学习 属性图聚类 对比学习 困难样本挖掘
下载PDF
基于SSD的不平衡样本车辆检测与识别 被引量:1
2
作者 马浩良 谢林柏 《计算机技术与发展》 2019年第12期135-140,共6页
为了实现在复杂环境,车辆样本不平衡情况下的实时车辆检测与识别,基于SSD算法搭建了车辆检测与识别的框架。针对车辆数据存在车型难易样本不均衡以及SSD方法存在的正负样本不平衡问题,在SSD引入改进的损失函数来挖掘难易样本,通过提高... 为了实现在复杂环境,车辆样本不平衡情况下的实时车辆检测与识别,基于SSD算法搭建了车辆检测与识别的框架。针对车辆数据存在车型难易样本不均衡以及SSD方法存在的正负样本不平衡问题,在SSD引入改进的损失函数来挖掘难易样本,通过提高难样本的学习比例来更好地识别样本较少的车辆类型。引入SSD级联的网络结构,在第一级SSD挖掘正负样本,在第二级SSD根据第一级SSD的指导过滤掉大量的负样本。构建了拥有7480幅图像,包含4种车辆类型的数据集对该方法进行验证。实验结果表明,基于改进SSD的方法提高了少样本车辆类型的准确率,使整体检测精度取得了90.0%的准确率。针对不均衡样本的车辆数据集有较好的通用性,适用于车辆检测与识别任务。 展开更多
关键词 车辆检测与识别 SSD 样本不平衡 难易样本挖掘 正负样本挖掘
下载PDF
基于深度卷积的残差三生网络研究与应用 被引量:1
3
作者 厉铮泽 杨小远 +1 位作者 朱日东 王敬凯 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第9期1864-1873,共10页
针对图像多分类任务,提出基于深度卷积的残差三生网络,旨在通过残差学习和距离比较来训练神经网络得到有效的特征表示。首先,设计了一个21层的深度卷积神经网络作为三生网络的嵌入网络,其中该卷积网络共连接6个块(block)。利用残差学习... 针对图像多分类任务,提出基于深度卷积的残差三生网络,旨在通过残差学习和距离比较来训练神经网络得到有效的特征表示。首先,设计了一个21层的深度卷积神经网络作为三生网络的嵌入网络,其中该卷积网络共连接6个块(block)。利用残差学习的方式,每个block的输出层由卷积层的输出和该block的输入共同组成,降低网络学习难度,避免网络出现退化问题。然后,每个block中采用相同拓扑结构分路的卷积层,拓宽网络的宽度。最后,在全连接层拼接了来自前面卷积层和block的输出,加强特征信息的传递。训练前,针对正负样本采用交叉组合的采样方法来增加有效训练样本量;训练期间,用样本中心点更换原点样本作为输入,能平均降低0. 5%错误率。在与其他三生网络的对比实验中,在MNIST、CIFAR10和SVHN数据库上达到最好的效果,在所有分类网络中,本文网络在MNIST上达到最好的效果,在CIFAR10和SVHN上表现优异。 展开更多
关键词 卷积神经网络 三生损失 残差学习 挑战性样本采样 样本中心点
下载PDF
基于难样本挖掘的孪生网络目标跟踪 被引量:1
4
作者 亢洁 孙阳 沈钧戈 《计算机应用研究》 CSCD 北大核心 2021年第4期1216-1219,1223,共5页
为了解决全卷积孪生网络目标跟踪算法(SiamFC)在复杂环境下容易出现跟踪漂移甚至跟踪失败的问题,提出了一种基于难样本挖掘的孪生网络目标跟踪方法。该方法在SiamFC算法的基础上,首先利用特征融合模块进行特征融合,以提高特征表征的鲁棒... 为了解决全卷积孪生网络目标跟踪算法(SiamFC)在复杂环境下容易出现跟踪漂移甚至跟踪失败的问题,提出了一种基于难样本挖掘的孪生网络目标跟踪方法。该方法在SiamFC算法的基础上,首先利用特征融合模块进行特征融合,以提高特征表征的鲁棒性,然后引入一个新的损失函数,加强网络对难样本的学习能力并缓解正负样本不平衡的问题。为验证该方法的有效性,在OTB2015和GOT10k数据集上对算法进行测试实验。实验结果表明,在OTB2015数据集上该方法比SiamFC算法在成功率上提高2.6%,精度上提高2%;在GOT10k数据集上该方法的mAO为0.429,相比SiamFC算法提高了3.7%,在光照变化、目标形变、相似背景干扰情况下具有更好的表现。 展开更多
关键词 孪生网络 目标跟踪 特征融合 损失函数 难样本挖掘
下载PDF
基于改进Faster RCNN的安全帽佩戴检测研究 被引量:68
5
作者 徐守坤 王雅如 +3 位作者 顾玉宛 李宁 庄丽华 石林 《计算机应用研究》 CSCD 北大核心 2020年第3期901-905,共5页
针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目... 针对已有安全帽佩戴检测算法对部分遮挡、尺寸不一和小目标存在检测难度大、准确率低的问题,提出了基于改进的Faster RCNN和多部件结合的安全帽佩戴检测方法。在原始Faster RCNN上运用多尺度训练和增加锚点数量增强网络检测不同尺寸目标的鲁棒性,并引入防止正负样本不均衡的在线困难样本挖掘策略,然后对检测出的佩戴安全帽工人和安全帽等采用多部件结合方法剔除误检目标。实验表明,相比于原始Faster RCNN,检测准确率提高了7%,对环境的适应性更强。 展开更多
关键词 安全帽佩戴检测 FASTER RCNN 多尺度训练 在线困难样本挖掘 多部件结合
下载PDF
Faster R-CNN模型在车辆检测中的应用 被引量:64
6
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 FASTER R-CNN模型 区域建议网络 难负样本挖掘 KITTI数据集
下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法
7
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
下载PDF
基于难样本挖掘与混合注意力机制的目标跟踪算法
8
作者 张焱焱 刘嘉敏 《长江信息通信》 2023年第5期80-83,共4页
在SiamFC目标跟踪算法的基础上,提出一种基于难样本挖掘和混合注意力机制的目标跟踪算法。首先,为了改善训练样本的数据分布情况,将图像自身边缘信息填充训练样本尺寸不足的区域来增强背景干扰信息;其次,在模板分支加入残差连接来对目... 在SiamFC目标跟踪算法的基础上,提出一种基于难样本挖掘和混合注意力机制的目标跟踪算法。首先,为了改善训练样本的数据分布情况,将图像自身边缘信息填充训练样本尺寸不足的区域来增强背景干扰信息;其次,在模板分支加入残差连接来对目标从不同层级进行特征表达;然后,在搜索分支采用混合注意力模块充分地提取特征信息;最后,使用深度可分离卷积降低模型复杂度。实验结果表明本文算法在遮挡、光照、旋转等复杂场景下具有良好的表现。 展开更多
关键词 目标跟踪 孪生网络 难样本挖掘 注意力机制 残差网络
下载PDF
基于线性分配的难负样本挖掘度量学习
9
作者 傅泰铭 陈燕 李陶深 《计算机应用》 CSCD 北大核心 2020年第2期352-357,共6页
科学家依靠鲸鱼尾巴的形状及其独特的标记来识别鲸鱼的种类,但靠人眼识别和手工标注的过程非常繁琐。而且鲸鱼尾巴照片数据集存在数据分布不均衡的特点,其中个别种类样本数量极少,甚至仅有一份;同时样本个体差异较小,并且包含未知类别,... 科学家依靠鲸鱼尾巴的形状及其独特的标记来识别鲸鱼的种类,但靠人眼识别和手工标注的过程非常繁琐。而且鲸鱼尾巴照片数据集存在数据分布不均衡的特点,其中个别种类样本数量极少,甚至仅有一份;同时样本个体差异较小,并且包含未知类别,导致以图像分类的方式完成鲸鱼身份的自动标注存在困难。为解决度量学习在该任务下难以分类的问题,在孪生神经网络(SNN)的基础上,利用线性分配问题(LAP)算法进行难负样本挖掘训练过程从而动态地构筑训练批次。首先对训练样本提取图像特征向量,并计算特征向量的相似性度量;然后通过LAP为模型分配样本对,根据度量分数矩阵动态地构筑训练样本批次,针对性地训练困难样本对。在一个数据分布不平衡的鲸鱼尾巴图像数据集和CUB-200-2001数据集上得到的实验结果表明,所提算法在少数类学习和细粒度图像分类上能取得良好的效果。 展开更多
关键词 线性分配 难负样本挖掘 度量学习 细粒度图像识别 孪生神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部