In this paper, the long-term statistical properties of wave height in an idealized square harbor with a partial opening are studied. The incident waves are propagated into the harbor numerically by the finite/infinite...In this paper, the long-term statistical properties of wave height in an idealized square harbor with a partial opening are studied. The incident waves are propagated into the harbor numerically by the finite/infinite element method using three different wave models: (1) monochromatic wave train, (2) long-crested random wave train, and (3) short-crested random wave train. This study shows that for a given incident wave, the wave height in the harbor is affected by the wave model used. For long-term estimation of wave height exceedance probability, it is recommended that the waves be propagated into the harbor using the random wave model, and that wave heights be computed by use of the Rayleigh probability distribution.展开更多
文摘In this paper, the long-term statistical properties of wave height in an idealized square harbor with a partial opening are studied. The incident waves are propagated into the harbor numerically by the finite/infinite element method using three different wave models: (1) monochromatic wave train, (2) long-crested random wave train, and (3) short-crested random wave train. This study shows that for a given incident wave, the wave height in the harbor is affected by the wave model used. For long-term estimation of wave height exceedance probability, it is recommended that the waves be propagated into the harbor using the random wave model, and that wave heights be computed by use of the Rayleigh probability distribution.