This paper presents a new solution to haptic based teleoperation to control a large-sized slave robot for space exploration, which includes two specially designed haptic joysticks, a hybrid master-slave motion mapping...This paper presents a new solution to haptic based teleoperation to control a large-sized slave robot for space exploration, which includes two specially designed haptic joysticks, a hybrid master-slave motion mapping method, and a haptic feedback model rendering the operating resistance and the interactive feedback on the slave side. Two devices using the 3 R and DELTA mechanisms respectively are developed to be manipulated to control the position and orientation of a large-sized slave robot by using both of a user's two hands respectively. The hybrid motion mapping method combines rate control and variable scaled position mapping to realize accurate and efficient master-slave control. Haptic feedback for these two mapping modes is designed with emphasis on ergonomics to improve the immersion of haptic based teleoperation. A stiffness estimation method is used to calculate the contact stiffness on the slave side and play the contact force rendered by using a traditional spring-damping model to a user on the master side stably. Experiments by using virtual environments to simulate the slave side are conducted to validate the effectiveness and efficiency of the proposed solution.展开更多
A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mo...A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mobile robot recognizes the exact position of the obstacle through configuring the nested ultrasonic sensor and giving feedback information to the haptic device.The haptic device consisting of five vibration motors can realize the haptic through the vibration of user's finger using the position information of the obstacle received feedback.In addition,it has high accuracy to recognize the surrounding environment and realizes the various situations with the fuzzy controller and the nested ultrasonic sensors.展开更多
基金supported by the Open Research Fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(No.LSU-YKZX-2017-02)
文摘This paper presents a new solution to haptic based teleoperation to control a large-sized slave robot for space exploration, which includes two specially designed haptic joysticks, a hybrid master-slave motion mapping method, and a haptic feedback model rendering the operating resistance and the interactive feedback on the slave side. Two devices using the 3 R and DELTA mechanisms respectively are developed to be manipulated to control the position and orientation of a large-sized slave robot by using both of a user's two hands respectively. The hybrid motion mapping method combines rate control and variable scaled position mapping to realize accurate and efficient master-slave control. Haptic feedback for these two mapping modes is designed with emphasis on ergonomics to improve the immersion of haptic based teleoperation. A stiffness estimation method is used to calculate the contact stiffness on the slave side and play the contact force rendered by using a traditional spring-damping model to a user on the master side stably. Experiments by using virtual environments to simulate the slave side are conducted to validate the effectiveness and efficiency of the proposed solution.
基金The MOTIE(Ministry of Trade,Industry and Energy),Korea,under the Human Resources Development Program for Special Environment Navigation Localization National Robotics Research Center support program supervised by the NIPA(National IT Industry Promotion Agency)(H1502-13-1001)The MSIP(Ministry of Science,ICT&Future Planning),Korea,under the ITRC(Information Technology Research Center)support program(NIPA-2013-H0301-13-2006)supervised by the NIPA
文摘A haptic device is proposed which gives the user feedback information on their location and orientation of the obstacle through the mobile robot that detects the obstacle in an environment where the user cannot see.Mobile robot recognizes the exact position of the obstacle through configuring the nested ultrasonic sensor and giving feedback information to the haptic device.The haptic device consisting of five vibration motors can realize the haptic through the vibration of user's finger using the position information of the obstacle received feedback.In addition,it has high accuracy to recognize the surrounding environment and realizes the various situations with the fuzzy controller and the nested ultrasonic sensors.