Four wheel steering(4 WS) technology can effectively improve the vehicle handling stability and driving safety. In order to fully consider the influence of the rear wheel steering, the vehicle dynamics model of 4 WS v...Four wheel steering(4 WS) technology can effectively improve the vehicle handling stability and driving safety. In order to fully consider the influence of the rear wheel steering, the vehicle dynamics model of 4 WS vehicle, including the rear wheel steering by wire and two degrees of freedom vehicle model of 4 WS vehicle, is established in this paper. The desired yaw rate is obtained according to the variable transmission ratio strategy. The yaw rate tracking strategy is applied to 4 WS vehicle and rear wheel steering resistance moment is taken into account. Based on the robust control theory, H_2/H_∞ mixed robust controller design is carried to research the stability control of 4 WS vehicle. Finally, the closed-loop simulation added driver model based on preview theory is carried out. The simulation results indicate that the designed H_2/H_∞ mixed robust controller can achieve the stability control.展开更多
直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二...直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51375007)the Fundamental Research Funds for the Central Universities(Grant No.NE2016002)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201605)
文摘Four wheel steering(4 WS) technology can effectively improve the vehicle handling stability and driving safety. In order to fully consider the influence of the rear wheel steering, the vehicle dynamics model of 4 WS vehicle, including the rear wheel steering by wire and two degrees of freedom vehicle model of 4 WS vehicle, is established in this paper. The desired yaw rate is obtained according to the variable transmission ratio strategy. The yaw rate tracking strategy is applied to 4 WS vehicle and rear wheel steering resistance moment is taken into account. Based on the robust control theory, H_2/H_∞ mixed robust controller design is carried to research the stability control of 4 WS vehicle. Finally, the closed-loop simulation added driver model based on preview theory is carried out. The simulation results indicate that the designed H_2/H_∞ mixed robust controller can achieve the stability control.
文摘直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。