To meet the increasing research demand for deep space exploration,especially for the second libration point (L2) conditional periodic orbit (Halo orbit) in the Sun-Earth system,the methods to get analytical Halo orbit...To meet the increasing research demand for deep space exploration,especially for the second libration point (L2) conditional periodic orbit (Halo orbit) in the Sun-Earth system,the methods to get analytical Halo orbit and differential-correction Halo orbit were described firstly,and the corresponding orbits accuracy was analyzed.Then,based on the results of third-order and differential-correction Halo orbits,the formation form was studied.Analysis was carried out to discuss the influence of system amplitude,initial phase,and phase difference on the formation form,as well as that of initial orbit values on form accuracy.Finally,some simulation results demonstrate the validity of the proposed methods.展开更多
This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted thre...This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,展开更多
文摘To meet the increasing research demand for deep space exploration,especially for the second libration point (L2) conditional periodic orbit (Halo orbit) in the Sun-Earth system,the methods to get analytical Halo orbit and differential-correction Halo orbit were described firstly,and the corresponding orbits accuracy was analyzed.Then,based on the results of third-order and differential-correction Halo orbits,the formation form was studied.Analysis was carried out to discuss the influence of system amplitude,initial phase,and phase difference on the formation form,as well as that of initial orbit values on form accuracy.Finally,some simulation results demonstrate the validity of the proposed methods.
基金National Natural Science Foundation of China (10702003)Innovation Foundation of Beijing University of Aeronautics and Astronautics for Ph.D. Graduates
文摘This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation,