1982年,Nyman用一种半透性滤膜治疗牙周病,后扩展应用于骨缺损的治疗。1993年,Buser等提出了引导骨再生(guided bone regeneration,GBR)的概念。其原理是根据各类组织细胞迁移速度不同,将屏障膜置于软组织和骨缺损之间建立生物...1982年,Nyman用一种半透性滤膜治疗牙周病,后扩展应用于骨缺损的治疗。1993年,Buser等提出了引导骨再生(guided bone regeneration,GBR)的概念。其原理是根据各类组织细胞迁移速度不同,将屏障膜置于软组织和骨缺损之间建立生物屏障,创造一个相对封闭的组织环境,展开更多
本病例报告了一例自体骨-异种骨混合的钛网支撑的引导骨再生(guided bone regeneration,GBR)伴角化龈增量的美学区连续牙列缺损种植修复。患者因外伤致上颌前牙区骨折、水平向骨丧失,连续多颗天然牙缺失。临床治疗取自体骨混合去蛋白牛...本病例报告了一例自体骨-异种骨混合的钛网支撑的引导骨再生(guided bone regeneration,GBR)伴角化龈增量的美学区连续牙列缺损种植修复。患者因外伤致上颌前牙区骨折、水平向骨丧失,连续多颗天然牙缺失。临床治疗取自体骨混合去蛋白牛骨矿物质(deproteinized bovine bone mineral,DBBM)异种骨填入骨缺损区,在唇侧放置钛网和生物可吸收性胶原膜。半年后行简易修复导板引导下种植体植入,二期术前行角化龈增量,临时修复体佩戴6个月后完成最终美学修复。结果可见,自体骨-异种骨混合的钛网支撑的GBR获得了理想的骨增量效果,为种植体植入提供了理想的位点,同时角化龈增量手术为最终美学修复提供了令医患满意的临床效果。因此,自体骨-异种骨混合用于钛网支撑的GBR是一种增加前牙区水平骨量的有效方法。展开更多
目的:观察分析奥邦骨修复材料在下颌阻生第三磨牙拔除同期行引导骨组织再生术(guided bone regeneration,GBR)中的临床疗效。方法:将40例下颌第三磨牙阻生患者随机分为GBR组和对照组(各20例)。GBR组在拔牙后使用奥邦骨修复材料行引导骨...目的:观察分析奥邦骨修复材料在下颌阻生第三磨牙拔除同期行引导骨组织再生术(guided bone regeneration,GBR)中的临床疗效。方法:将40例下颌第三磨牙阻生患者随机分为GBR组和对照组(各20例)。GBR组在拔牙后使用奥邦骨修复材料行引导骨组织再生术,对照组常规处理拔牙创后仅严密缝合。术后6个月分别记录两组拔牙区域骨密度,第二磨牙的远中牙槽嵴高度变化及冷热刺激痛度。结果:骨密度(Hu)GBR组(137.35±8.82)高于对照组(109.10±11.40);第二磨牙远中牙槽嵴高度值变化(H)GBR组(4.56±1.43)mm高于对照组(0.93±0.83)mm;术后6个月第二磨牙冷热刺激痛度视觉模拟评分值(visual analogue score,VAS)(0.36±0.31)小于对照组(2.00±1.15),差异均有统计学意义(P<0.01)。结论:奥邦骨修复材料在下颌阻生第三磨牙拔除后同期行GBR中疗效显著。展开更多
目的:探讨Er:YAG激光联合引导骨再生(guided bone regeneration,GBR)治疗种植体周围炎伴骨缺损的临床效果。方法:选择2017—2019年在嘉定区牙病防治所行种植修复且诊断为种植体周围炎伴骨缺损的26例患者(共34颗种植体)作为研究对象,随...目的:探讨Er:YAG激光联合引导骨再生(guided bone regeneration,GBR)治疗种植体周围炎伴骨缺损的临床效果。方法:选择2017—2019年在嘉定区牙病防治所行种植修复且诊断为种植体周围炎伴骨缺损的26例患者(共34颗种植体)作为研究对象,随机分为实验组和对照组。2组均接受翻瓣、清创和GBR治疗,实验组采用Er:YAG激光处理种植体表面及污染物,对照组采用传统机械法处理。记录和比较2组患者治疗前和治疗后6、12和24个月的探诊深度(probing depth,PD)、探诊出血指数(bleeding on probing,BOP)、菌斑指数(plaque index,PI)、种植体周围边缘骨缺损高度(reduce of marginal bone level,RBL),采用SPSS 20.0软件包对数据进行统计学分析。结果:2组患者经不同方法治疗后,PD、BOP、PI和RBL均显著改善;治疗后6、12和24个月后,PD、BOP和PI改善无统计学差异;治疗后12和24个月,实验组RBL改善显著优于对照组。结论:在种植体周围炎伴骨缺损的GBR治疗中,Er:YAG激光疗法效果优于传统机械法,更有利于新骨再生。展开更多
Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as lo...Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as local delivery carriers for different biologic mediators. Simvastatin, a drug commonly used for lowering cholesterol, has demonstrated promising bone regenerative capability. The aim of this study was to evaluate simvastatin loaded chitosan nanofiber membranes for guided bone regeneration (GBR) applications and their ability to enhance bone formation in rat calvarial defects. Nanofibrous chitosan membranes with random fiber orientation were fabricated by electrospinning technique and loaded with 0.25 mg of simvastatin under sterile conditions. One membrane was implanted subperiosteally to cover an 8 mm diameter critical size calvarial defect. Two groups: 1) Control: non-loaded chitosan membranes;2) Experimental: chitosan membranes loaded with 0.25 mg of simvastatin were evaluated histologically and via micro-computed tomography (micro-CT) for bone formation at 4 and 8 weeks time points (n = 5/group per time point). Both groups exhibited good biocompatibility with only mild or moderate inflammatory response during the healing process. Histologic and micro-CT evaluations confirmed bone formation in calvarial defects as early as 4 weeks using control and experimental membranes. In addition, newly-formed bony bridges consolidating calvarial defects histologically along with partial radiographic defect coverage were observed at 8 weeks in both groups. Although control and experimental groups demonstrated no significant statistical differences in results of bone formation, biodegradable chitosan nanofiber membranes loaded with simvastatin showed a promising regenerative potential as a barrier material for guided bone regeneration applications.展开更多
文摘本病例报告了一例自体骨-异种骨混合的钛网支撑的引导骨再生(guided bone regeneration,GBR)伴角化龈增量的美学区连续牙列缺损种植修复。患者因外伤致上颌前牙区骨折、水平向骨丧失,连续多颗天然牙缺失。临床治疗取自体骨混合去蛋白牛骨矿物质(deproteinized bovine bone mineral,DBBM)异种骨填入骨缺损区,在唇侧放置钛网和生物可吸收性胶原膜。半年后行简易修复导板引导下种植体植入,二期术前行角化龈增量,临时修复体佩戴6个月后完成最终美学修复。结果可见,自体骨-异种骨混合的钛网支撑的GBR获得了理想的骨增量效果,为种植体植入提供了理想的位点,同时角化龈增量手术为最终美学修复提供了令医患满意的临床效果。因此,自体骨-异种骨混合用于钛网支撑的GBR是一种增加前牙区水平骨量的有效方法。
文摘目的:观察分析奥邦骨修复材料在下颌阻生第三磨牙拔除同期行引导骨组织再生术(guided bone regeneration,GBR)中的临床疗效。方法:将40例下颌第三磨牙阻生患者随机分为GBR组和对照组(各20例)。GBR组在拔牙后使用奥邦骨修复材料行引导骨组织再生术,对照组常规处理拔牙创后仅严密缝合。术后6个月分别记录两组拔牙区域骨密度,第二磨牙的远中牙槽嵴高度变化及冷热刺激痛度。结果:骨密度(Hu)GBR组(137.35±8.82)高于对照组(109.10±11.40);第二磨牙远中牙槽嵴高度值变化(H)GBR组(4.56±1.43)mm高于对照组(0.93±0.83)mm;术后6个月第二磨牙冷热刺激痛度视觉模拟评分值(visual analogue score,VAS)(0.36±0.31)小于对照组(2.00±1.15),差异均有统计学意义(P<0.01)。结论:奥邦骨修复材料在下颌阻生第三磨牙拔除后同期行GBR中疗效显著。
文摘目的:探讨Er:YAG激光联合引导骨再生(guided bone regeneration,GBR)治疗种植体周围炎伴骨缺损的临床效果。方法:选择2017—2019年在嘉定区牙病防治所行种植修复且诊断为种植体周围炎伴骨缺损的26例患者(共34颗种植体)作为研究对象,随机分为实验组和对照组。2组均接受翻瓣、清创和GBR治疗,实验组采用Er:YAG激光处理种植体表面及污染物,对照组采用传统机械法处理。记录和比较2组患者治疗前和治疗后6、12和24个月的探诊深度(probing depth,PD)、探诊出血指数(bleeding on probing,BOP)、菌斑指数(plaque index,PI)、种植体周围边缘骨缺损高度(reduce of marginal bone level,RBL),采用SPSS 20.0软件包对数据进行统计学分析。结果:2组患者经不同方法治疗后,PD、BOP、PI和RBL均显著改善;治疗后6、12和24个月后,PD、BOP和PI改善无统计学差异;治疗后12和24个月,实验组RBL改善显著优于对照组。结论:在种植体周围炎伴骨缺损的GBR治疗中,Er:YAG激光疗法效果优于传统机械法,更有利于新骨再生。
文摘Chitosan nanofiber membranes have been known to have a high degree of biocompatibility and support new bone formation with controllable biodegradation. The surface area of these membranes may allow them to serve as local delivery carriers for different biologic mediators. Simvastatin, a drug commonly used for lowering cholesterol, has demonstrated promising bone regenerative capability. The aim of this study was to evaluate simvastatin loaded chitosan nanofiber membranes for guided bone regeneration (GBR) applications and their ability to enhance bone formation in rat calvarial defects. Nanofibrous chitosan membranes with random fiber orientation were fabricated by electrospinning technique and loaded with 0.25 mg of simvastatin under sterile conditions. One membrane was implanted subperiosteally to cover an 8 mm diameter critical size calvarial defect. Two groups: 1) Control: non-loaded chitosan membranes;2) Experimental: chitosan membranes loaded with 0.25 mg of simvastatin were evaluated histologically and via micro-computed tomography (micro-CT) for bone formation at 4 and 8 weeks time points (n = 5/group per time point). Both groups exhibited good biocompatibility with only mild or moderate inflammatory response during the healing process. Histologic and micro-CT evaluations confirmed bone formation in calvarial defects as early as 4 weeks using control and experimental membranes. In addition, newly-formed bony bridges consolidating calvarial defects histologically along with partial radiographic defect coverage were observed at 8 weeks in both groups. Although control and experimental groups demonstrated no significant statistical differences in results of bone formation, biodegradable chitosan nanofiber membranes loaded with simvastatin showed a promising regenerative potential as a barrier material for guided bone regeneration applications.