合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义。该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于S形...合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义。该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于S形函数的水盐胁迫计算方法,以修正原SWAP模型对根系吸水的模拟。进一步嵌入了参数与输入数据较少且可以模拟作物生长过程及实际产量的EPIC(environmental policy integrated calculator)作物生长模型,构建了改进的农田尺度土壤水盐动态与作物生长耦合模拟模型-SWAP-EPIC。分别采用宁夏惠农灌区春小麦和春玉米田间试验数据,对SWAP-EPIC模型田间适用性进行了检验。对比分析各层土壤水分与盐分浓度、作物生长指标(叶面积指数、地上部生物量)的模拟值与实测值,结果表明:春小麦和春玉米试验中土壤水分的平均相对误差MRE和均方根误差RMSE均接近于0且模型Nash效率系数NSE值趋近于1,水分模块模拟精度较高,盐分浓度模拟存在略微差异但总体上一致性较好,并且作物生长指标匹配良好;同时,模拟的产量和蒸散发均较为接近实际值,春小麦和春玉米产量模拟相对误差分别为4.9%和3.3%。综上,该文改进的SWAP-EPIC模型可良好地应用于寒旱区农田尺度土壤水盐运移与作物生长耦合模拟。展开更多
Knowledge about the amino acid requirements and the response of pigs to the amino acid supply is essential in feed formulation. A deficient AA supply results in a reduction in performance while an oversupply is costly...Knowledge about the amino acid requirements and the response of pigs to the amino acid supply is essential in feed formulation. A deficient AA supply results in a reduction in performance while an oversupply is costly and leads to excessive nitrogen excretion with a potentially negative environmental impact. Amino acid requirements are determined to a large extent by the protein deposition in the body and, for lactating sows, by the protein exported in the milk. The concept of ideal protein was developed more than 50 years ago and refers to a protein with an amino acid profile that exactly meets the animal's requirement so that all amino acids are equally limiting for performance. Because Lys typically is the first-limiting amino acid, the ideal amino acid profile is often expressed relative to Lys. Although the ideal protein profile is often assumed to be constant for a given production stage, (small) changes in the ideal protein profile can occur within a production stage. This can be caused by changes in the relative contribution of the different components of amino acid requirements during the productive life on the animal (e.g. changes in the relative contribution of growth and maintenance). Amino acids requirements can be determined experimentally using dose-response studies. The design of the study, the chosen response criterion, and the statistical model affect the requirement estimate. Although considerable experimental work has been carried out to determine the requirements for Lys, Met, Thr, and Trp in growing pigs (and to a lesser extent in sows), little is known about the requirements for the other essential amino acids. Experimental dose-response studies generally focus on the requirement and less on the overall response (i.e. what are the consequences of an amino acid deficiency?). This latter aspect is, to some extent, accounted for in modelling approaches that quantify the response of the animal to the amino acid supply in a dynamic way. The paper describes the origin of ideal展开更多
This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumou...This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.展开更多
文摘Knowledge about the amino acid requirements and the response of pigs to the amino acid supply is essential in feed formulation. A deficient AA supply results in a reduction in performance while an oversupply is costly and leads to excessive nitrogen excretion with a potentially negative environmental impact. Amino acid requirements are determined to a large extent by the protein deposition in the body and, for lactating sows, by the protein exported in the milk. The concept of ideal protein was developed more than 50 years ago and refers to a protein with an amino acid profile that exactly meets the animal's requirement so that all amino acids are equally limiting for performance. Because Lys typically is the first-limiting amino acid, the ideal amino acid profile is often expressed relative to Lys. Although the ideal protein profile is often assumed to be constant for a given production stage, (small) changes in the ideal protein profile can occur within a production stage. This can be caused by changes in the relative contribution of the different components of amino acid requirements during the productive life on the animal (e.g. changes in the relative contribution of growth and maintenance). Amino acids requirements can be determined experimentally using dose-response studies. The design of the study, the chosen response criterion, and the statistical model affect the requirement estimate. Although considerable experimental work has been carried out to determine the requirements for Lys, Met, Thr, and Trp in growing pigs (and to a lesser extent in sows), little is known about the requirements for the other essential amino acids. Experimental dose-response studies generally focus on the requirement and less on the overall response (i.e. what are the consequences of an amino acid deficiency?). This latter aspect is, to some extent, accounted for in modelling approaches that quantify the response of the animal to the amino acid supply in a dynamic way. The paper describes the origin of ideal
基金supported by the National Natural Science Foundation of China (10772051)the State Scholarship Fund of China (2009610108)the Ninth Innovation Fundfor Graduate Students of Fudan University (YAN CAI)
文摘This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.