期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
正则化稀疏模型 被引量:62
1
作者 刘建伟 崔立鹏 +1 位作者 刘泽宇 罗雄麟 《计算机学报》 EI CSCD 北大核心 2015年第7期1307-1325,共19页
正则化稀疏模型在机器学习和图像处理等领域发挥着越来越重要的作用,它具有变量选择功能,可以解决建模中的过拟合等问题.Tibshirani提出的Lasso使得正则化稀疏模型真正开始流行.文中总结了各种正则化稀疏模型,指出了各个稀疏模型被提出... 正则化稀疏模型在机器学习和图像处理等领域发挥着越来越重要的作用,它具有变量选择功能,可以解决建模中的过拟合等问题.Tibshirani提出的Lasso使得正则化稀疏模型真正开始流行.文中总结了各种正则化稀疏模型,指出了各个稀疏模型被提出的原因、所具有的优点、适宜解决的问题及其模型的具体形式.最后,文中还指出了正则化稀疏模型未来的研究方向. 展开更多
关键词 正则化 稀疏 变量选择 套索 无偏估计 组稀疏 融合套索
下载PDF
组稀疏模型及其算法综述 被引量:8
2
作者 刘建伟 崔立鹏 罗雄麟 《电子学报》 EI CAS CSCD 北大核心 2015年第4期776-782,共7页
稀疏性与组稀疏性在统计学、信号处理和机器学习等领域中具有重要的应用.本文总结和分析了不同组稀疏模型之间的区别与联系,比较了不同组稀疏模型的变量选择能力、变量组选择能力、变量选择一致性和变量组选择一致性,总结了组稀疏模型... 稀疏性与组稀疏性在统计学、信号处理和机器学习等领域中具有重要的应用.本文总结和分析了不同组稀疏模型之间的区别与联系,比较了不同组稀疏模型的变量选择能力、变量组选择能力、变量选择一致性和变量组选择一致性,总结了组稀疏模型的各类求解算法并指出了各算法的优点和不足.最后,本文对组稀疏模型未来的研究方向进行了探讨. 展开更多
关键词 稀疏性 组稀疏性 变量选择 变量组选择 一致性
下载PDF
结合组稀疏效应和多核学习的图像标注 被引量:8
3
作者 袁莹 邵健 +1 位作者 吴飞 庄越挺 《软件学报》 EI CSCD 北大核心 2012年第9期2500-2509,共10页
图像中存在的纹理、颜色和形状等异构视觉特征,在表示特定高层语义时所起作用的重要程度不同.为了在图像标注过程中更加有效地利用这些异构特征,提出了一种基于组稀疏(group sparsity)的多核学习方法(multiplekernel learning with grou... 图像中存在的纹理、颜色和形状等异构视觉特征,在表示特定高层语义时所起作用的重要程度不同.为了在图像标注过程中更加有效地利用这些异构特征,提出了一种基于组稀疏(group sparsity)的多核学习方法(multiplekernel learning with group sparsity,简称MKLGS),为不同图像语义选择不同的组群特征.MKLGS先将包含多种异构特征的非线性图像数据映射到一个希尔伯特空间,然后利用希尔伯特空间中的核函数以及组LASSO(groupLASSO)对每个图像类别选择最具区别性特征的集合,最终训练得到分类模型对图像进行标注.通过与目前其他图像标注算法进行对比,实验结果表明,基于组稀疏的多核学习方法在图像标注中能取得很好的效果. 展开更多
关键词 组LASSO 组稀疏 多核学习 特征选择 图像标注
下载PDF
基于评分相似性的群稀疏矩阵分解推荐算法 被引量:9
4
作者 盛伟 王保云 +1 位作者 何苗 余英 《计算机应用》 CSCD 北大核心 2017年第5期1397-1401,共5页
如何提高系统的推荐精度,是当前推荐系统面临的重要问题。对矩阵分解模型进行了研究,针对评分数据的群结构性问题,提出了一种基于评分相似性的群稀疏矩阵分解模型(SSMF-GS)。首先,根据用户的评分行为对评分数据矩阵进行分群,获得相似用... 如何提高系统的推荐精度,是当前推荐系统面临的重要问题。对矩阵分解模型进行了研究,针对评分数据的群结构性问题,提出了一种基于评分相似性的群稀疏矩阵分解模型(SSMF-GS)。首先,根据用户的评分行为对评分数据矩阵进行分群,获得相似用户群评分矩阵;然后,通过SSMF-GS算法对相似用户群评分矩阵进行群稀疏矩阵分解;最后,采用交替优化算法对模型进行求解。所提模型可以筛选出不同用户群的偏好潜在项目特征,提升了潜在特征的可解释性。在Group Lens网站上提供的Movie Lens数据集上进行仿真实验,实验结果表明,所提算法可以显著提高预测精度,平均绝对误差(MAE)及均方根误差(RMSE)指标均表现出良好的性能。 展开更多
关键词 群稀疏 矩阵分解 L2 1范数正则化 潜在特征
下载PDF
结构稀疏模型及其算法研究进展 被引量:5
5
作者 刘建伟 崔立鹏 罗雄麟 《计算机科学》 CSCD 北大核心 2016年第S1期1-16,共16页
结构稀疏模型在统计学、信号处理和机器学习等领域中具有重要的应用。结构稀疏模型主要通过在目标函数中引入会导致组稀疏效果的罚函数来实现特征组结构选择。有趣的是一些组稀疏模型不仅能实现特征组选择,而且同时能够实现组内的特征... 结构稀疏模型在统计学、信号处理和机器学习等领域中具有重要的应用。结构稀疏模型主要通过在目标函数中引入会导致组稀疏效果的罚函数来实现特征组结构选择。有趣的是一些组稀疏模型不仅能实现特征组选择,而且同时能够实现组内的特征选择。根据使用的罚函数的类型,结构稀疏模型主要分为组套索模型和非凸罚组稀疏模型两大类。系统地总结了重要的组结构稀疏模型,分析了各种组结构稀疏模型之间的区别与联系,归纳比较了各种组结构稀疏模型的统计特性(例如模型选择一致性、参数估计一致性和oracle性质)和组结构稀疏模型的求解算法。当前,结构套索模型主要包括普通组套索模型、L∞,1组套索模型、重叠组套索模型、树组套索模型、多输出树组套索模型、混合组套索模型、自适应组套索模型、逻辑斯蒂组套索模型和贝叶斯组套索模型。非凸罚组稀疏模型包括组SCAD罚模型、组桥模型和组MC罚模型等。求解组稀疏模型的算法有组最小角回归算法、块坐标下降(上升)算法、活动集算法、内点算法、投影梯度算法、谱投影梯度算法、轮换方向乘子算法和块坐标梯度下降算法等,结合组稀疏模型对这些算法进行了详细的分析。在使用上述优化方法前,通常需要对目标函数进行预处理,将不平滑的、非凸的、块坐标不可分离的组稀疏模型的目标函数向平滑、凸、块坐标可分离的方向进行转化,这一步常利用的技巧有变分不等式、Nesterov的平滑近似技巧、局部一阶泰勒展开近似、局部二次近似、对偶范数和对偶函数等。接着给出了最新提出的一些组稀疏模型,如关于广义加模型的组套索模型、复合组桥模型、平方根组套索模型和关于Tobit模型的组套索模型等。最后,对组稀疏模型未来的研究方向进行了探讨。 展开更多
关键词 稀疏 组稀疏 罚函数 组套索 特征组选择 组内特征选择 算法
下载PDF
基于群稀疏的结构化字典学习 被引量:6
6
作者 郭景峰 李贤 《中国图象图形学报》 CSCD 北大核心 2012年第11期1347-1352,共6页
随着稀疏表示在机器学习和图像处理领域中的广泛应用,字典学习的算法受到越来越多的关注。传统意义上训练出来的字典只是一些原子的集合,没有结构。考虑到稀疏表示信号中群结构的稀疏性,建立了基于群稀疏的结构化字典学习的数学模型,并... 随着稀疏表示在机器学习和图像处理领域中的广泛应用,字典学习的算法受到越来越多的关注。传统意义上训练出来的字典只是一些原子的集合,没有结构。考虑到稀疏表示信号中群结构的稀疏性,建立了基于群稀疏的结构化字典学习的数学模型,并结合凸分析和单调算子理论提出了一个结构化字典学习的有效算法。实验结果表明,该算法具有更快的收敛速度,新模型训练出来的字典能够更好地适应数据,提高表示数据的精度,进而提高图像增强的效果。 展开更多
关键词 稀疏表示 字典学习 群稀疏 凸优化 单调算子
原文传递
一种基于分组稀疏编码的复数图像降噪算法 被引量:6
7
作者 郝红星 吴玲达 宋晓瑞 《计算机学报》 EI CSCD 北大核心 2019年第9期1991-2003,共13页
基于稀疏编码的复数图像降噪是目前的一个热门研究领域.该文研究一种基于分组稀疏编码的复数图像降噪算法,将复数值作为统一的整体进行分组和稀疏编码,通过限制同一分组中的图像块使用训练字典中相似的元素进行编码,从而抑制在稀疏编码... 基于稀疏编码的复数图像降噪是目前的一个热门研究领域.该文研究一种基于分组稀疏编码的复数图像降噪算法,将复数值作为统一的整体进行分组和稀疏编码,通过限制同一分组中的图像块使用训练字典中相似的元素进行编码,从而抑制在稀疏编码过程中对噪声的编码.该文首先研究了图像块分组的算法,提出了一种图像块分组稀疏的编码算法并将其应用于复数图像的降噪问题.该文通过模拟真实的含噪干涉合成孔径雷达(InSAR)图像以及核磁共振图像(MRI)对该算法进行验证.从实验结果可以得出,相对于目前已有的算法,该文算法能够获得更低的降噪误差,特别是对于含有大片平滑区域的图像或者噪声水平较高的图像具有较大的降噪优势. 展开更多
关键词 复数域稀疏编码 图像降噪 分组稀疏 复数图像处理 冗余字典编码
下载PDF
基于方向和结构特征的遥感图像条带噪声分离方法 被引量:5
8
作者 孔祥阳 彭群聂 徐保根 《电光与控制》 CSCD 北大核心 2020年第1期6-11,共6页
针对去除遥感图像条带噪声时易造成模糊或细节丢失等问题,分析研究干净图像及条带噪声的方向和结构特征,提出了遥感图像条带噪声分离方法。对于条带噪声,其稀疏结构特征表征为条带的组稀疏性和平滑性,结合条带的L2,1范数和沿条带方向的... 针对去除遥感图像条带噪声时易造成模糊或细节丢失等问题,分析研究干净图像及条带噪声的方向和结构特征,提出了遥感图像条带噪声分离方法。对于条带噪声,其稀疏结构特征表征为条带的组稀疏性和平滑性,结合条带的L2,1范数和沿条带方向的梯度的L0范数实现特征约束;对于干净图像,其边缘连续性采用L1范数进行约束。考虑该约束模型的非凸性,采用基于近端交替方向乘子(PADMM)的算法进行快速求解。模拟数据和实际数据的实验结果表明,所提算法有效去除了图像中的条带噪声,同时高效保留原图像的细节信息,充分验证了算法的可行性和可靠性。 展开更多
关键词 条带噪声 非凸优化 组稀疏 方向特征 结构特征
下载PDF
基于图正则化与非负组稀疏的自动图像标注 被引量:4
9
作者 钱智明 钟平 王润生 《电子与信息学报》 EI CSCD 北大核心 2015年第4期784-790,共7页
设计一个稳健的自动图像标注系统的重要环节是提取能够有效描述图像语义的视觉特征。由于颜色、纹理和形状等异构视觉特征在表示特定图像语义时所起作用的重要程度不同且同一类特征之间具有一定的相关性,该文提出了一种图正则化约束下... 设计一个稳健的自动图像标注系统的重要环节是提取能够有效描述图像语义的视觉特征。由于颜色、纹理和形状等异构视觉特征在表示特定图像语义时所起作用的重要程度不同且同一类特征之间具有一定的相关性,该文提出了一种图正则化约束下的非负组稀疏(Graph Regularized Non-negative Group Sparsity,GRNGS)模型来实现图像标注,并通过一种非负矩阵分解方法来计算其模型参数。该模型结合了图正则化与2,1l-范数约束,使得标注过程中所选的组群特征能体现一定的视觉相似性和语义相关性。在Corel5K和ESP Game等图像数据集上的实验结果表明:相较于一些最新的图像标注模型,GRNGS模型的鲁棒性更强,标注结果更精确。 展开更多
关键词 图像标注 图正则化 组稀疏 非负矩阵分解
下载PDF
基于快速三因子分解和组稀疏正则化的高光谱图像去噪
10
作者 高小雨 白静远 +1 位作者 黄扬智 宁纪锋 《光子学报》 EI CAS CSCD 北大核心 2023年第4期129-147,共19页
为了有效去除高光谱图像中噪声带来的干扰,提升图像质量,在局部低秩和全局组稀疏结合的框架内提出了一种基于快速三因子分解和组稀疏正则化的去噪模型。首先,将高光谱图像分解成若干三维重叠图块并将其逐波段列化成矩阵,在快速三因子分... 为了有效去除高光谱图像中噪声带来的干扰,提升图像质量,在局部低秩和全局组稀疏结合的框架内提出了一种基于快速三因子分解和组稀疏正则化的去噪模型。首先,将高光谱图像分解成若干三维重叠图块并将其逐波段列化成矩阵,在快速三因子分解的框架下将这些矩阵分解为两个正交因子矩阵和一个核心矩阵,对核心矩阵添加L_(2,1)范数最小化约束;其次,对高光谱图像空间和光谱方向的梯度张量分别添加组稀疏正则化约束;最后,将低秩矩阵的三因子分解和全局组稀疏正则化结合,可以充分挖掘图像的局部低秩和稀疏的先验信息,并去除各种混合噪声。在三个数据集上与五种经典模型相比,该模型的各项评价指标更高,去噪图像保留了更多细节信息,去噪效果更好。 展开更多
关键词 图像处理 图像去噪 高光谱图像 交替方向乘子法 局部低秩 组稀疏
下载PDF
融合多种小波与全变差正则化的相位恢复算法 被引量:4
11
作者 练秋生 李颖 陈书贞 《光学学报》 EI CAS CSCD 北大核心 2018年第2期291-298,共8页
在相位恢复过程中,用图像的稀疏性作为先验知识可以提高图像的重构质量。结合图像在小波域的组稀疏性与图像自身的梯度稀疏性,针对编码衍射图样模型,提出一种融合正交小波db10和sym4组稀疏性与全变差正则化的相位恢复算法。针对当前相... 在相位恢复过程中,用图像的稀疏性作为先验知识可以提高图像的重构质量。结合图像在小波域的组稀疏性与图像自身的梯度稀疏性,针对编码衍射图样模型,提出一种融合正交小波db10和sym4组稀疏性与全变差正则化的相位恢复算法。针对当前相位恢复算法重构时间较长的问题,采用复合分裂算法将非凸优化问题分解成几个易于求解的子问题(包括两个组硬阈值算子和全变差最小化)进行求解,减少了图像重构时间。实验结果表明:在高斯噪声下,与BM3D-PRGAMP算法相比,所提算法重构图像的峰值信噪比提高了约0.8dB,重构时间缩短了90%;在泊松模型中,所提算法也具有较大优势,充分说明了所提算法对噪声具有稳健性。 展开更多
关键词 光计算 相位恢复 编码衍射图样 组稀疏 全变差 复合分裂算法
原文传递
双重L2,1稀疏表示高光谱降维算法
12
作者 董隽硕 吴玲达 《计算机工程与设计》 北大核心 2023年第4期1122-1128,共7页
针对传统降维算法处理后分类识别精度不高的问题,提出一种双重L2,1稀疏表示降维算法。将分组稀疏表示的思想引入高光谱降维算法中,利用基于L2,1范数约束的稀疏表示方法重构高光谱图像,获得特征强化的高光谱数据,对强化后的数据进行基于L... 针对传统降维算法处理后分类识别精度不高的问题,提出一种双重L2,1稀疏表示降维算法。将分组稀疏表示的思想引入高光谱降维算法中,利用基于L2,1范数约束的稀疏表示方法重构高光谱图像,获得特征强化的高光谱数据,对强化后的数据进行基于L2,1范数约束的稀疏表示,将稀疏系数矩阵作为高维数据的低维表示。在Indian Pines数据集上的分类结果表明,总体分类精度能够达到94.33%。该算法利用L2,1稀疏表示的结果组内稠密组间稀疏的特点,强化特征的同时提高了低维数据的分类识别效果。 展开更多
关键词 分组稀疏 高光谱 L2 1范数 稀疏表示 稀疏重构
下载PDF
利用组稀疏特性的宽带压缩频谱感知 被引量:4
13
作者 吴宏林 王殊 《信号处理》 CSCD 北大核心 2014年第3期355-362,共8页
基于认知无线电的动态频谱接入需对宽带信道进行频谱感知,而越来越高的采样速率日益成为宽带频谱感知的瓶颈。压缩感知作为一种新的信号获取技术为亚奈奎斯特采样速率下的宽带频谱感知提供了一种可行方案。在相关应用场景中,如果能够挖... 基于认知无线电的动态频谱接入需对宽带信道进行频谱感知,而越来越高的采样速率日益成为宽带频谱感知的瓶颈。压缩感知作为一种新的信号获取技术为亚奈奎斯特采样速率下的宽带频谱感知提供了一种可行方案。在相关应用场景中,如果能够挖掘相关先验信息并在重构算法中整合这些信息,将大幅提高压缩感知的性能。本文基于压缩感知技术,利用信道的划分信息及宽带信号的组稀疏特性,提出了一种组稀疏贪婪算法GOMP。该方法在成熟的贪婪算法基础上,利用子信道内多频点的组测量信息,根据组测量的概率分布特性来识别宽带信道的活动子信道。这种组测量识别方式使算法能以较少的观测数据实现对宽带信道的快速准确感知,极大地降低了宽带频谱感知所需的采样速率。实验结果表明:该算法比传统的OMP算法及BP算法不仅具有更好的重构效果及频谱检测性能,而且具有更好的压缩性能及实时性能。 展开更多
关键词 宽带频谱感知 压缩感知 组稀疏 贪婪算法
下载PDF
稀疏优化理论与算法若干新进展 被引量:4
14
作者 赵晨 罗自炎 修乃华 《运筹学学报》 北大核心 2020年第4期1-24,共24页
稀疏优化是指带有l0范数正则或稀疏约束的一类重要的非凸非连续优化问题,并被广泛应用于信号和图像处理、机器学习、经济学、统计学等众多领域。经过十多年的发展,稀疏优化已经成为当下热门的研究方向,并已获得丰富的研究成果。为进一... 稀疏优化是指带有l0范数正则或稀疏约束的一类重要的非凸非连续优化问题,并被广泛应用于信号和图像处理、机器学习、经济学、统计学等众多领域。经过十多年的发展,稀疏优化已经成为当下热门的研究方向,并已获得丰富的研究成果。为进一步拓展稀疏优化研究,将重点关注最近五年该领域的最新研究成果,并从理论与算法两个方面进行总结与评述,同时列出相关的重要文献以供读者参考。 展开更多
关键词 稀疏优化 l0范数 稀疏集 理论 算法 组稀疏
下载PDF
Facial expression recognition via weighted group sparsity 被引量:1
15
作者 Hao ZHENG Xin GENG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期266-275,共10页
Considering the distinctiveness of different group features in the sparse representation, a novel joint multi- task and weighted group sparsity (JMT-WGS) method is pro- posed. By weighting popular group sparsity, no... Considering the distinctiveness of different group features in the sparse representation, a novel joint multi- task and weighted group sparsity (JMT-WGS) method is pro- posed. By weighting popular group sparsity, not only the rep- resentation coefficients from the same class over their asso- ciate dictionaries may share some similarity, but also the rep- resentation coefficients from different classes have enough di- versity. The proposed method is cast into a multi-task frame- work with two-stage iteration. In the first stage, representa- tion coefficient can be optimized by accelerated proximal gra- dient method when the weights are fixed. In the second stage, the weights are computed via the prior information about their entropy. The experimental results on three facial expres- sion databases show that the proposed algorithm outperforms other state-of-the-art algorithms and demonstrate the promis- ing performance of the proposed algorithm. 展开更多
关键词 facial expression recognition multi-task learning group sparsity
原文传递
多尺度轮廓波分解的群稀疏壁画修复算法 被引量:1
16
作者 陈永 赵梦雪 陶美风 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第6期120-128,共9页
壁画图像修复是利用原始壁画图像的先验信息从缺失像素的破损壁画出发恢复原始图像的过程。针对稀疏表示在壁画图像修复时,未考虑壁画结构信息与纹理信息的差异性,导致修复结果易出现纹理模糊和结构线条断裂等问题,提出了一种基于多尺... 壁画图像修复是利用原始壁画图像的先验信息从缺失像素的破损壁画出发恢复原始图像的过程。针对稀疏表示在壁画图像修复时,未考虑壁画结构信息与纹理信息的差异性,导致修复结果易出现纹理模糊和结构线条断裂等问题,提出了一种基于多尺度轮廓波分解的群稀疏壁画修复算法。首先,采用非下采样轮廓波变换对待修复壁画图像进行多尺度分解,将其分解为低频纹理分量和高频结构分量,克服了现有稀疏表示壁画修复时,未考虑壁画结构和纹理信息差异性的不足。其次,采用提出的改进群稀疏算法,对纹理低频分量构造样本块相似群集合,并通过奇异值分解和分裂伯格曼算法迭代优化得到自适应群字典和稀疏系数,从而完成低频分量的修复。然后,使用三次立方卷积插值算法实现对壁画结构高频分量的插值修复。最后,通过非下采样轮廓波逆变换对修复后各尺度分量进行融合重构。通过对真实敦煌壁画的修复实验,结果表明,所提方法相较对比算法取得了更好的主客观修复效果及评价。 展开更多
关键词 图像重构 壁画修复 多尺度分解 群稀疏 非下采样轮廓波变换
下载PDF
基于局部敏感和分组稀疏的鲁棒人脸识别
17
作者 孙茜 《河北北方学院学报(自然科学版)》 2022年第5期12-17,共6页
目的为了提升人脸识别的性能,提出一种将局部敏感性稀疏和分组稀疏相结合的人脸识别方法。方法同时学习人脸图像分组稀疏性和数据局部性,不仅考虑了训练数据字典的分组结构信息,也整合了数据的局部性,学习更多的可判别稀疏表示系数用以... 目的为了提升人脸识别的性能,提出一种将局部敏感性稀疏和分组稀疏相结合的人脸识别方法。方法同时学习人脸图像分组稀疏性和数据局部性,不仅考虑了训练数据字典的分组结构信息,也整合了数据的局部性,学习更多的可判别稀疏表示系数用以人脸识别。实验在ORL,AR和Extended Yale B数据库上进行仿真测试。结果仿真结果表明,在ORL数据库上,提出方法在50%训练百分比设置下实现了98.000%的识别性能,在AR数据库上,提出方法在不同PCA降维设置下最高可以实现优于SRC算法5.008%的识别性能,在Extended Yale B数据库上,提出方法在特征维数为130时可以实现96.626%识别性能。结论采用该方法能够对不同姿态、光照、表情变化具有较强鲁棒性,提升人脸识别的性能,实际应用效果好。 展开更多
关键词 人脸识别 稀疏表示 局部敏感 分组稀疏
下载PDF
结合总变差和组稀疏性的压缩感知重构方法 被引量:1
18
作者 朱俊 陈长伟 《兵器装备工程学报》 CAS 2017年第11期114-117,128,共5页
为了提高图像重建的质量,基于压缩感知理论,提出了一种基于总变差和组稀疏性的图像重建方法,同时考虑图像像素灰度值的梯度稀疏性和重叠图像块的非局部相似性两种先验知识。为了准确挖掘先验知识,本文选择非凸lp范数描述,并利用交替方... 为了提高图像重建的质量,基于压缩感知理论,提出了一种基于总变差和组稀疏性的图像重建方法,同时考虑图像像素灰度值的梯度稀疏性和重叠图像块的非局部相似性两种先验知识。为了准确挖掘先验知识,本文选择非凸lp范数描述,并利用交替方向乘子法求解产生的重构模型。实验结果表明,与当前主流的重建算法相比,所提算法能够获得更高的图像重构结果。 展开更多
关键词 压缩感知 总变差 组稀疏性 交替方向乘子算法
下载PDF
图趋势过滤诱导的噪声容错多标记学习模型 被引量:1
19
作者 林腾涛 查思明 +1 位作者 陈蕾 龙显忠 《计算机应用》 CSCD 北大核心 2021年第1期8-14,共7页
针对多标记学习中特征噪声和标记噪声经常共同出现的问题,提出了一种图趋势过滤诱导的噪声容错多标记学习模型(GNTML)。该模型通过组稀疏约束桥接增强的标记,从而同时容忍特征噪声和标记噪声。模型的关键之处在于标记增强矩阵的学习。... 针对多标记学习中特征噪声和标记噪声经常共同出现的问题,提出了一种图趋势过滤诱导的噪声容错多标记学习模型(GNTML)。该模型通过组稀疏约束桥接增强的标记,从而同时容忍特征噪声和标记噪声。模型的关键之处在于标记增强矩阵的学习。为了在混合噪声场景下学习到合理的标记增强矩阵,首先通过引入图趋势过滤(GTF)机制来容忍含噪示例特征与标记之间关联的不一致性,从而减轻特征噪声对标记增强矩阵学习的影响;然后通过引入组稀疏约束的标记保真惩罚来减轻标记噪声对标记增强矩阵学习的影响,同时引入标记关联矩阵的稀疏约束来刻画标记之间的局部关联特性,使得样本标记能够在相似样本之间得到更好的传播;最后在7个真实多标记数据集上进行5个不同评价指标下的实验。实验结果表明,提出的模型在66.67%的情况下取得最优值或次优值,优于其他5个多标记学习算法,能有效地提高多标记学习的鲁棒性。 展开更多
关键词 多标记学习 噪声容错 组稀疏 标记增强 图趋势过滤
下载PDF
基于Adaptive Group LASSO的CVaR高维组合投资模型
20
作者 张杰 《中南财经政法大学研究生学报》 2018年第1期50-57,共8页
传统的CVaR条件风险价值组合投资模型能够很好的度量市场风险,但是容易在决策的过程中产生极端的投资权重,对CVaR模型增加一般范数约束后可以解决极端投资权重的问题,但却忽略了金融市场上常见的板块联动效应。基于上述原因,文章在... 传统的CVaR条件风险价值组合投资模型能够很好的度量市场风险,但是容易在决策的过程中产生极端的投资权重,对CVaR模型增加一般范数约束后可以解决极端投资权重的问题,但却忽略了金融市场上常见的板块联动效应。基于上述原因,文章在传统的CVaR模型的基础上,施加Adaptive Group LASSO惩罚,构建了一种基于Adaptive Group LASSO的CVaR高维组合投资模型,通过Adaptive Group LASSO分位数回归求解算法,实现了在消除极端投资头寸的同时达到金融资产组水平上变量稀疏化的目的。最后,蒙特卡洛模拟与实证研究均发现,与传统的CVaR组合投资模型以及带有LAS—SO约束的CVaR组合投资模型相比,基于Adaptive Group LASSO的CVaR模型能够更好的考虑板块联动效应,并在行业组水平上选择相应的金融资产。 展开更多
关键词 CVAR ADAPTIVE group LASSO 高维组合投资 组稀疏性 分位数回归
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部