Seed shattering is a common problem in early soybean production system (ESPS) in the Midsouth, which mainly uses maturity group (MG) IV soybeans. Many studies have been conducted on the genetics of soybean shattering ...Seed shattering is a common problem in early soybean production system (ESPS) in the Midsouth, which mainly uses maturity group (MG) IV soybeans. Many studies have been conducted on the genetics of soybean shattering resistance for individual varieties;however, information on the physiology of soybean shattering pattern under specific environmental conditions, which is often critical to soybean growers, is very limited. Field experiments were conducted at Stoneville MS from 2007 to 2009 to investigate the shattering patterns of 80-132 MG IV soybean varieties each year. Results from 2007 and 2008 indicated that, when April-planted MG IV soybeans matured in mid- to late August, pods of most soybean varieties did not shatter within the first three weeks after maturity (WAM) and there was no significant shattering effect on final yields. However, differences in pod shattering among the varieties became apparent in the fourth WAM. Late-planted MG IV soybeans, which matured in early September, had a low shattering rate and could hold seeds up to 6 WAM before reaching a critical shattering point. Most soybean varieties planted in April 2009 did not show significant pod shattering by the end of the fourth WAM. The critical point of shattering was not reached until 6 - 7 WAM. Relatively lower temperatures and abundant rainfall during the late growing season in 2009 may be the main reasons causing delayed shattering in April-planted MG IV soybeans. Results from the May-planting of 2007 and the April-planting of 2009 indicated that soybeans maturing after September have much less problematic shattering. Different weather patterns, especially temperature and rainfall in each year could be essential factors affecting seed shattering patterns.展开更多
Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialle...Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 x 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings,40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference展开更多
文摘Seed shattering is a common problem in early soybean production system (ESPS) in the Midsouth, which mainly uses maturity group (MG) IV soybeans. Many studies have been conducted on the genetics of soybean shattering resistance for individual varieties;however, information on the physiology of soybean shattering pattern under specific environmental conditions, which is often critical to soybean growers, is very limited. Field experiments were conducted at Stoneville MS from 2007 to 2009 to investigate the shattering patterns of 80-132 MG IV soybean varieties each year. Results from 2007 and 2008 indicated that, when April-planted MG IV soybeans matured in mid- to late August, pods of most soybean varieties did not shatter within the first three weeks after maturity (WAM) and there was no significant shattering effect on final yields. However, differences in pod shattering among the varieties became apparent in the fourth WAM. Late-planted MG IV soybeans, which matured in early September, had a low shattering rate and could hold seeds up to 6 WAM before reaching a critical shattering point. Most soybean varieties planted in April 2009 did not show significant pod shattering by the end of the fourth WAM. The critical point of shattering was not reached until 6 - 7 WAM. Relatively lower temperatures and abundant rainfall during the late growing season in 2009 may be the main reasons causing delayed shattering in April-planted MG IV soybeans. Results from the May-planting of 2007 and the April-planting of 2009 indicated that soybeans maturing after September have much less problematic shattering. Different weather patterns, especially temperature and rainfall in each year could be essential factors affecting seed shattering patterns.
基金financially supported by a research grant from the German Agency for Renewable Resources(Fachagentur Nachwachsende Rohstoffe e.V or FNR,Grant Number:22008813)
文摘Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 x 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings,40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference