期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
1
作者
戚晓利
王兆俊
+3 位作者
毛俊懿
王志文
崔德海
赵方祥
《振动与冲击》
EI
CSCD
北大核心
2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合...
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。
展开更多
关键词
故障诊断
滚动轴承
组卷积残差结构
注意力机制
斑马优化核极限学习机(ZOA-KELM)
下载PDF
职称材料
结合CWT和LightweightNet的滚动轴承实时故障诊断方法
2
作者
李飞龙
和伟辉
+1 位作者
刘立芳
齐小刚
《智能系统学报》
CSCD
北大核心
2023年第3期496-505,共10页
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征...
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。
展开更多
关键词
滚动轴承
故障诊断
连续小波变换
时频域特征
轻量级神经网络
分组卷积
通道混洗
倒残差结构
下载PDF
职称材料
题名
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
1
作者
戚晓利
王兆俊
毛俊懿
王志文
崔德海
赵方祥
机构
安徽工业大学机械工程学院
出处
《振动与冲击》
EI
CSCD
北大核心
2024年第11期165-175,共11页
基金
国家自然科学基金面上项目(51975004)。
文摘
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。
关键词
故障诊断
滚动轴承
组卷积残差结构
注意力机制
斑马优化核极限学习机(ZOA-KELM)
Keywords
fault
diagnosis
rolling
bearing
group
convolution
residual
structure
attention
mechanism
zebra
optimization
algorithm-based
kernel
extreme
learning
machine(ZOA-KELM)
分类号
TH165.3 [机械工程—机械制造及自动化]
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
结合CWT和LightweightNet的滚动轴承实时故障诊断方法
2
作者
李飞龙
和伟辉
刘立芳
齐小刚
机构
西安电子科技大学计算机学院
西安卫星测控中心
西安电子科技大学数学与统计学院
出处
《智能系统学报》
CSCD
北大核心
2023年第3期496-505,共10页
文摘
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。
关键词
滚动轴承
故障诊断
连续小波变换
时频域特征
轻量级神经网络
分组卷积
通道混洗
倒残差结构
Keywords
rolling
bearing
fault
diagnosis
continuous
wavelet
transform
time-frequency
feature
lightweight
neural
network
group
convolution
channel
shuffle
inverted
residual
structure
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
戚晓利
王兆俊
毛俊懿
王志文
崔德海
赵方祥
《振动与冲击》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
2
结合CWT和LightweightNet的滚动轴承实时故障诊断方法
李飞龙
和伟辉
刘立芳
齐小刚
《智能系统学报》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部