生物完整性指数是水体生态系统健康评价的重要指标,已被广泛应用于湖泊河流等的生态系统健康评价中.但利用水体中分解者微生物群落构建IBI评价标准的报道很少,针对地下水生态系统的研究更是鲜见.本研究针对包钢稀土尾矿库周边地下水生...生物完整性指数是水体生态系统健康评价的重要指标,已被广泛应用于湖泊河流等的生态系统健康评价中.但利用水体中分解者微生物群落构建IBI评价标准的报道很少,针对地下水生态系统的研究更是鲜见.本研究针对包钢稀土尾矿库周边地下水生态系统健康开展评价工作,基于地下水环境中微生物群落Illumina高通量测序信息,筛选关键环境因子,甄别敏感或耐受微生物分类属,确定候选生物参数,探索针对地下水的微生物完整性指数(microbiome index of biotic integrity,M-IBI)评价流程与标准构建方法.结果表明,总计12个地下水样点中,4个样点属于健康等级(Ⅰ级),占总样点的33.3%;2个样点属于亚健康等级(Ⅱ级),占总样点的16.7%;5个样点属于一般等级(Ⅲ级),占41.7%;1个样点属于较差等级(Ⅳ级),占8.3%;总体来看,靠近尾矿库的样点健康等级较低,而远离尾矿库参照点受到的干扰较小,健康等级较高,这可能与人类活动干扰影响程度密切相关.参照该地区地下水理化参数基础上的水质情况分析结果,发现应用M-IBI指数可较合理地评估包头稀土尾矿区周边地下水生态系统健康状况.结合生态系统健康内涵,本研究初步提出针对地下水生态系统健康的M-IBI指数评价体系构建流程.展开更多
Subaerial fallout from the Holocene eruption of Mount Mazama in the Oregon Cascade Range was deposited upon relatively low permeability volcanic and volcaniclastic bedrock and regolith. In the Walker Rim study area, e...Subaerial fallout from the Holocene eruption of Mount Mazama in the Oregon Cascade Range was deposited upon relatively low permeability volcanic and volcaniclastic bedrock and regolith. In the Walker Rim study area, erosion by ephemeral streams shortly after the eruption disrupted the lateral continuity of the 270 to 300 cm-thick pumice deposit. Co-evolution of the surface- and ground-water systems in a low-relief, low-slope landscape allowed diffuse groundwater discharge from the banks of the evolving stream system. Accumulation of organic material from groundwater dependent ecosystems at these sites of discharge allowed peat deposits to form on gently sloping erosion surfaces cut into the pumice deposit. Following early stream incision, fine-grained, silt-rich deposits accumulated in valleys and contributed permeability barriers to the lateral migration of water in the pumice aquifer. Fens discharge from the pumice aquifer through gently sloping surfaces patterned after the slope of the erosion surface cut into the pumice deposit and overlain by approximately 1 m of peat on the sloping surface and alluvium or iron-cemented pumice overlain by alluvium at the toe of the slope. The predominant source of groundwater is snowmelt which infiltrates the pumice deposit during the freshet. However, shallow groundwater flow also takes place along permeable pathways in bedrock units. Locally, low volume discharge takes place along faults. The snowmelt-dependent hydrologic system that supports the fens of the Walker Rim study area occurs at elevations primarily above 1585 m.展开更多
文摘生物完整性指数是水体生态系统健康评价的重要指标,已被广泛应用于湖泊河流等的生态系统健康评价中.但利用水体中分解者微生物群落构建IBI评价标准的报道很少,针对地下水生态系统的研究更是鲜见.本研究针对包钢稀土尾矿库周边地下水生态系统健康开展评价工作,基于地下水环境中微生物群落Illumina高通量测序信息,筛选关键环境因子,甄别敏感或耐受微生物分类属,确定候选生物参数,探索针对地下水的微生物完整性指数(microbiome index of biotic integrity,M-IBI)评价流程与标准构建方法.结果表明,总计12个地下水样点中,4个样点属于健康等级(Ⅰ级),占总样点的33.3%;2个样点属于亚健康等级(Ⅱ级),占总样点的16.7%;5个样点属于一般等级(Ⅲ级),占41.7%;1个样点属于较差等级(Ⅳ级),占8.3%;总体来看,靠近尾矿库的样点健康等级较低,而远离尾矿库参照点受到的干扰较小,健康等级较高,这可能与人类活动干扰影响程度密切相关.参照该地区地下水理化参数基础上的水质情况分析结果,发现应用M-IBI指数可较合理地评估包头稀土尾矿区周边地下水生态系统健康状况.结合生态系统健康内涵,本研究初步提出针对地下水生态系统健康的M-IBI指数评价体系构建流程.
文摘Subaerial fallout from the Holocene eruption of Mount Mazama in the Oregon Cascade Range was deposited upon relatively low permeability volcanic and volcaniclastic bedrock and regolith. In the Walker Rim study area, erosion by ephemeral streams shortly after the eruption disrupted the lateral continuity of the 270 to 300 cm-thick pumice deposit. Co-evolution of the surface- and ground-water systems in a low-relief, low-slope landscape allowed diffuse groundwater discharge from the banks of the evolving stream system. Accumulation of organic material from groundwater dependent ecosystems at these sites of discharge allowed peat deposits to form on gently sloping erosion surfaces cut into the pumice deposit. Following early stream incision, fine-grained, silt-rich deposits accumulated in valleys and contributed permeability barriers to the lateral migration of water in the pumice aquifer. Fens discharge from the pumice aquifer through gently sloping surfaces patterned after the slope of the erosion surface cut into the pumice deposit and overlain by approximately 1 m of peat on the sloping surface and alluvium or iron-cemented pumice overlain by alluvium at the toe of the slope. The predominant source of groundwater is snowmelt which infiltrates the pumice deposit during the freshet. However, shallow groundwater flow also takes place along permeable pathways in bedrock units. Locally, low volume discharge takes place along faults. The snowmelt-dependent hydrologic system that supports the fens of the Walker Rim study area occurs at elevations primarily above 1585 m.