In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo...We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.展开更多
The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the parti...The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state repr...Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state represents a genuine macroscopic quantum state.Here we study the ground-state cooling of the mechanical vibration mode in a cavity magnomechanical system,and focus on the role of magnon squeezing in improving the cooling efficiency.The magnon squeezing is obtained by exploiting the magnon self-Kerr nonlinearity.We find that the magnon squeezing can significantly and even completely suppress the magnomechanical Stokes scattering.It thus becomes particularly useful in realizing ground-state cooling in the unresolved-sideband regime,where the conventional sideband cooling protocols become inefficient.We also find that the coupling to the microwave cavity plays only an adverse effect in mechanical cooling.This makes essentially the two-mode magnomechanical system(without involving the microwave cavity)a preferred system for cooling the mechanical motion,in which the magnon mode is established by a uniform bias magnetic field and a microwave drive field.展开更多
A series of novel atomic structure of lowest-energy Fe_(n)P_(13-n)(n=0-13)clusters via density functional theory(DFT)calculations and an unbiased structure search using Crystal structure AnaLYsis by Particle Swarm Opt...A series of novel atomic structure of lowest-energy Fe_(n)P_(13-n)(n=0-13)clusters via density functional theory(DFT)calculations and an unbiased structure search using Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO)code.Our research results show that the global minimum geometry structure of neutral Fe_(13-n)P_(n)(n=0-6)clusters tend to form cage structures but the lowest-energy Fe_(13-n)P_(n)(n=7-13)clusters are gradually evolution from a cage structure to a chain shape geometric structure.Their geometric structure should responsible for the raise of binding energy from Fe_7P_(6)to P_(13)clusters rather than chemical components.This is completely different from a linear relation of the binding energy with chemical components in our previous research for Cu_(n)Zr_(13-n)(n=3-10)clusters(J.Mol.Liq.343117603(2021)).Hence,in order to characterize the global chemical stability of target cluster,we proposed a new parameter(jyq=η/χ)that the chemical hardness of isolated cluster is used to be divided by its electronegativity.One of the biggest advantages of this parameter is successful coupling the ability of a resistance to redistribution of electrons and the ability to attract electrons from other system(such as atom,molecular or metallic clusters).Moreover,it is found that the P_(13)cluster shows typical insulator characteristics but the Fe_(12)P_(1)shows typical conductor characteristics,which phenomena can be attributed to the remarkable delocalized and localized electrons in Fe_(12)P_(1)and P_(13),respectively.In terms of nearly-free-electron mode,we also found that the number of electrons on Femi level(N(E_F))are obviously tended to toward a lower value when Fe was replaced gradually with P from Fe_(13)to P_(13),and a non-magnetic can be observed in Fe_(13),Fe_(2)P_(11),Fe_(1)P_(12),and P_(13)that mainly because their perfect symmetrical between spin-up and spin-down of density of states of electrons.展开更多
Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy leve...Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy levels of low-lying states and electromagnetic moments in odd-A^(49-57)Mn isotopes have been well reproduced in shell-model calculations,and the above phenomena could be understood with obviously different occupation numbers in proton orbitals such asπf_(7/2)andπp_(3/2),which changes similarly with the obtained quadrupole deformation in covariant density functional theory(CDFT).After considering the coupling of collective rotation and intrinsic single-particle motion,the available experimental magnetic moments in53Mn and adjacent nuclei can be well explained with CDFT.The present calculations suggest that the 5/2^(-)and 7/2^(-)states in53Mn are formed byπ5/2^(-)[312]andπ7/2^(-)[303]respectively.Together with the behavior of levels,this provides proofs for the level sequences of low-lying states in53Mn distinct from the K^(π)=5/2^(-)rotational band in^(49)Cr and other odd-A Mn isotopes.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the thre...The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.展开更多
This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It c...This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It confirms that the ground state structure of neutral GaTAs7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral GaTAs7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral GaTAs7 cluster is zero because all electrons axe paired together in their respective moleculax orbits. But for the ionic GaTAs7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.展开更多
Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interac...Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interactions, experiments in inverse kinematics can overcome such limitations. We discuss results of an experiment at the BM@N setup at JINR using a <sup>12</sup>C beam at 48 GeV/c to study quasi-elastic scattering reactions, single proton distributions, and short-range correlated nucleon-nucleon pairs. The inverse kinematics allows for the direct measurement of the nucleon-nucleon pair center-of-mass motion and provides first experimental evidence for scale separation of such pairs. Based on these results, we will in the future study neutron-rich nuclei in inverse kinematics in the context of short-range correlations and neutron stars.展开更多
Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-L...Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-Low-Pines transformation method and the quantum statistical theory. The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived. Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR, the dielectric constant ratio, the electron-phonon coupling strength or the temperature parameter is small. The larger the deviation of the value of aspect ratio e′ from 1 is, the more it is unfavorable to the stability of the ground state of the magnetopolaron. When the magnetopolaron is in the bound state, the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs, but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature. The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e′ when e′ 〈 1, but decrease with increasing e′ when e′ 〉 1. They get the maximum value at e′=1.展开更多
A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical grou...A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.展开更多
Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser...Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum展开更多
We investigate theoretically the electron transport properties of a two-sublevel quantum wire irradiated by a strong laser field resonant with the quasiparticle transition at low temperatures. Using the method of the ...We investigate theoretically the electron transport properties of a two-sublevel quantum wire irradiated by a strong laser field resonant with the quasiparticle transition at low temperatures. Using the method of the Keldysh equation of motion for nonequilibrium Green function, we examine the time-averaged conductance for the system with photon polarization parallel and perpendicular to the tunnelling current direction, respectively. We demonstrate that, by analysing some numerical examples, a feature of absolute negative conductance appears in the parallel case, while the conductance shows a symmetry distributed peaks in the Derpendicular case.展开更多
The properties of large bipolarons in two and three dimensions are investigated by averaging over therelative wavefunction of the two electrons and using the Lee-Low-Pines-Huybrechts variational method.The ground-stat...The properties of large bipolarons in two and three dimensions are investigated by averaging over therelative wavefunction of the two electrons and using the Lee-Low-Pines-Huybrechts variational method.The ground-state(GS)and excited-state energies of the Frhlich bipolaron for the whole range of electron-phonon coupling constantscan be obtained.The energies of the first relaxed excited state(RES)and Franck-Condon(FC)excited state of thebipolaron are also calculated.It is found that the first RES energy is lower than the FC state energy.The comparisonof our GS and RES energies with those in literature is also given.展开更多
We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant paramete...We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes,which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.展开更多
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
文摘We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.
文摘The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
基金supported by Zhejiang Province Program for Science and Technology(2020C01019)the National Natural Science Foundation of China(U1801661,11874249,11934010,12174329).
文摘Cavity magnomechanics has recently become a new platform for studying macroscopic quantum phenomena.The magnetostriction induced vibration mode of a large-size ferromagnet or ferrimagnet reaching its ground state represents a genuine macroscopic quantum state.Here we study the ground-state cooling of the mechanical vibration mode in a cavity magnomechanical system,and focus on the role of magnon squeezing in improving the cooling efficiency.The magnon squeezing is obtained by exploiting the magnon self-Kerr nonlinearity.We find that the magnon squeezing can significantly and even completely suppress the magnomechanical Stokes scattering.It thus becomes particularly useful in realizing ground-state cooling in the unresolved-sideband regime,where the conventional sideband cooling protocols become inefficient.We also find that the coupling to the microwave cavity plays only an adverse effect in mechanical cooling.This makes essentially the two-mode magnomechanical system(without involving the microwave cavity)a preferred system for cooling the mechanical motion,in which the magnon mode is established by a uniform bias magnetic field and a microwave drive field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52263025 and 51871096)the Scientific Research Project of the Education Department of Jiangxi Province,China(Grant Nos.GJJ2202021and GJJ2202011)+3 种基金the Natural Science Foundation of Jiangxi ProvinceChina(Grant Nos.20202BAB204004 and20171BAB216001)the Qinglan Scholars ProgramScientific Research Project(Grant No.22XJSK04)of Nanchang Normal University。
文摘A series of novel atomic structure of lowest-energy Fe_(n)P_(13-n)(n=0-13)clusters via density functional theory(DFT)calculations and an unbiased structure search using Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO)code.Our research results show that the global minimum geometry structure of neutral Fe_(13-n)P_(n)(n=0-6)clusters tend to form cage structures but the lowest-energy Fe_(13-n)P_(n)(n=7-13)clusters are gradually evolution from a cage structure to a chain shape geometric structure.Their geometric structure should responsible for the raise of binding energy from Fe_7P_(6)to P_(13)clusters rather than chemical components.This is completely different from a linear relation of the binding energy with chemical components in our previous research for Cu_(n)Zr_(13-n)(n=3-10)clusters(J.Mol.Liq.343117603(2021)).Hence,in order to characterize the global chemical stability of target cluster,we proposed a new parameter(jyq=η/χ)that the chemical hardness of isolated cluster is used to be divided by its electronegativity.One of the biggest advantages of this parameter is successful coupling the ability of a resistance to redistribution of electrons and the ability to attract electrons from other system(such as atom,molecular or metallic clusters).Moreover,it is found that the P_(13)cluster shows typical insulator characteristics but the Fe_(12)P_(1)shows typical conductor characteristics,which phenomena can be attributed to the remarkable delocalized and localized electrons in Fe_(12)P_(1)and P_(13),respectively.In terms of nearly-free-electron mode,we also found that the number of electrons on Femi level(N(E_F))are obviously tended to toward a lower value when Fe was replaced gradually with P from Fe_(13)to P_(13),and a non-magnetic can be observed in Fe_(13),Fe_(2)P_(11),Fe_(1)P_(12),and P_(13)that mainly because their perfect symmetrical between spin-up and spin-down of density of states of electrons.
基金the Natural Science Foundation of Jilin Province(Grant No.20220101017JC)National Natural Science Foundation of China(Grant Nos.11675063,11205068 and U1832139)+1 种基金National Basic Science Data Center‘Medical Physicas Data Base’(NO.NBSDC-DB-23)the Key Laboratory of Nuclear Data foundation(JCKY2020201C157)
文摘Based on the systematic studies for low-lying states of the odd-A^(49-57)Mn isotopes,the groundstates inversion and the rotational properties of a ground-state-based sequence are revealed and discussed.The energy levels of low-lying states and electromagnetic moments in odd-A^(49-57)Mn isotopes have been well reproduced in shell-model calculations,and the above phenomena could be understood with obviously different occupation numbers in proton orbitals such asπf_(7/2)andπp_(3/2),which changes similarly with the obtained quadrupole deformation in covariant density functional theory(CDFT).After considering the coupling of collective rotation and intrinsic single-particle motion,the available experimental magnetic moments in53Mn and adjacent nuclei can be well explained with CDFT.The present calculations suggest that the 5/2^(-)and 7/2^(-)states in53Mn are formed byπ5/2^(-)[312]andπ7/2^(-)[303]respectively.Together with the behavior of levels,this provides proofs for the level sequences of low-lying states in53Mn distinct from the K^(π)=5/2^(-)rotational band in^(49)Cr and other odd-A Mn isotopes.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
基金Supported by the National Natural Science Foundation of China under Grant No.11675148the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province under Grant No.2017GGJS008+2 种基金the Foundation and Advanced Technology Research Program of Henan Province under Grant No.162300410222the Outstanding Young Talent Research Fund of Zhengzhou University under Grant No.1521317002the Physics Research and Development Program of Zhengzhou University under Grant No.32410017
文摘The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200320)the National Natural Science Foundation of China (Grant No.10674039)
文摘This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It confirms that the ground state structure of neutral GaTAs7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral GaTAs7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral GaTAs7 cluster is zero because all electrons axe paired together in their respective moleculax orbits. But for the ionic GaTAs7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.
文摘Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interactions, experiments in inverse kinematics can overcome such limitations. We discuss results of an experiment at the BM@N setup at JINR using a <sup>12</sup>C beam at 48 GeV/c to study quasi-elastic scattering reactions, single proton distributions, and short-range correlated nucleon-nucleon pairs. The inverse kinematics allows for the direct measurement of the nucleon-nucleon pair center-of-mass motion and provides first experimental evidence for scale separation of such pairs. Based on these results, we will in the future study neutron-rich nuclei in inverse kinematics in the context of short-range correlations and neutron stars.
基金supported by the Natural Science Foundation of Hebei Province(No.A2008000463)the Science and Technology Research and Development Plan of Qinhuangdao(No.201101A027)
文摘Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods (QRs) with hydrogenic impurity is studied by means of the Huybrechts- Lee-Low-Pines transformation method and the quantum statistical theory. The expressions for the ground-state energy and the mean number ofphonons of the magnetopolaron are derived. Results of the numerical calculations show that the bound state of the magnetopolaron cannot be formed when the value of the aspect ratio of the QR, the dielectric constant ratio, the electron-phonon coupling strength or the temperature parameter is small. The larger the deviation of the value of aspect ratio e′ from 1 is, the more it is unfavorable to the stability of the ground state of the magnetopolaron. When the magnetopolaron is in the bound state, the absolute value of its ground-state energy and its mean number ofphonons increase with an increase of the dielectric constant ratio and confinement strength of QRs, but decrease with an increase in the cyclotron frequency of the external magnetic field and the temperature. The absolute value of the ground-state energy and the mean number of phonons of the magnetopolaron decrease with decreasing e′ when e′ 〈 1, but decrease with increasing e′ when e′ 〉 1. They get the maximum value at e′=1.
基金funding from the National Natural Science Foundation of China(NSFC)(Nos.11675046,21973023,and 11804308)the Program for Innovation Research of Science in Harbin Institute of Technology(No.A201412)+1 种基金the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(No.LBH-Q15060)the Natural Science Foundation of Henan Province under Grant No.202300410481.
文摘A dynamics regime of Rydberg atoms,unselective ground-state blockade(UGSB),is proposed in the context of Rydberg antiblockade(RAB),where the evolution of two atoms is suppressed when they populate in an identical ground state.UGSB is used to implement a SWAP gate in one step without individual addressing of atoms.Aiming at circumventing common issues in RAB-based gates including atomic decay,Doppler dephasing,and fluctuations in the interatomic coupling strength,we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime.In addition,on the basis of the proposed SWAP gates,we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB.The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.
文摘Laser pulse nonlinear transmission measurements through saturable absorbers of known absorption parameters allow the measurement of their energy density. On the other hand, nonlinear transmission measurements of laser pulses of known energy density through absorbing media allow their absorption parameter determination. The peak energy density w0P of second harmonic pulses of a mode-locked titanium sapphire laser at wavelength λP = 400 nm is determined by nonlinear energy transmission measurement TE through the dye ADS084BE (1,4-bis(9-ethyl-3-car-bazovinylene)-2-methoxy-5-(2’-ethyl-hexyloxy)-benzene) in tetrahydrofuran. TE(w0P) calibration curves are calculated for laser pulse peak energy density reading w0P from measured pulse energy transmissions TE. The ground-state absorption cross-section σP and the excited-state absorption cross-section σex at λP, and the number density N0 of the retinal Schiff base isoform RetA in pH 7.4 buffer of the blue-light adapted recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii were determined by picosecond titanium sapphire second harmonic laser pulse energy transmission measurement TE through RetA as a function of laser input peak energy density w0P. The complete absorption cross-section spectrum
基金Supported by the National Natural Science Foundation of China under Grant No 10574042, and the Research Foundation of Hunan Education Commission under Grant No 04A031.
文摘We investigate theoretically the electron transport properties of a two-sublevel quantum wire irradiated by a strong laser field resonant with the quasiparticle transition at low temperatures. Using the method of the Keldysh equation of motion for nonequilibrium Green function, we examine the time-averaged conductance for the system with photon polarization parallel and perpendicular to the tunnelling current direction, respectively. We demonstrate that, by analysing some numerical examples, a feature of absolute negative conductance appears in the parallel case, while the conductance shows a symmetry distributed peaks in the Derpendicular case.
基金the Natural Science Foundation of the Education Bureau of Zhejiang Province under Grant No.200601309partially by National Natural Science Foundation of China under Grant No.10274067
文摘The properties of large bipolarons in two and three dimensions are investigated by averaging over therelative wavefunction of the two electrons and using the Lee-Low-Pines-Huybrechts variational method.The ground-state(GS)and excited-state energies of the Frhlich bipolaron for the whole range of electron-phonon coupling constantscan be obtained.The energies of the first relaxed excited state(RES)and Franck-Condon(FC)excited state of thebipolaron are also calculated.It is found that the first RES energy is lower than the FC state energy.The comparisonof our GS and RES energies with those in literature is also given.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS056)the National Natural Science Foundation of China(Grant Nos.11605055 and 11574082)
文摘We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes,which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.