This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22(E1) and 25–26(E2) December 2016 in Northeast China. The visibility, particulate matter...This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22(E1) and 25–26(E2) December 2016 in Northeast China. The visibility, particulate matter(PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer(PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016–January 2017.Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1,whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.展开更多
Gully erosion can account for significant volumes of sediment exiting agricultural landscapes, but is difficult to monitor and quantify its evolution with traditional surveying technology. Scientific investigations of...Gully erosion can account for significant volumes of sediment exiting agricultural landscapes, but is difficult to monitor and quantify its evolution with traditional surveying technology. Scientific investigations of gullies depend on accurate and detailed topographic information to understand and evaluate the complex interactions between field topography and gully evolution. Detailed terrain representations can be produced by new technologies such as terrestrial LiDAR systems. These systems are capable of collecting information with a wide range of ground point sampling densities as a result of operator controlled factors. Increasing point density results in richer datasets at a cost of increased time needed to complete field surveys. In large research watersheds, with hundreds of sites being monitored, data collection can become costly and time consuming. In this study, the effect of point sampling density on the capability to collect topographic information was investigated at individual gully scale. This was performed through the utilization of semi-variograms to produce overall guiding principles for multi-temporal gully surveys based on various levels of laser sampling points and relief variation (low, moderate, and high). Results indicated the existence of a point sampling density threshold that produces little or no additional topographic information when exceeded. A reduced dataset was created using the density thresholds and compared to the original dataset with no major discrepancy. Although variations in relief and soil roughness can lead to different point sampling density requirements, the outcome of this study serves as practical guidance for future field surveys of gully evolution and erosion.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFC0203304 and 2016YFA0601901)National Natural Science Foundation of China(41605112,41590874,41375153,and 41375146)+2 种基金Chinese Academy of Meteorological Sciences Basic Research Fund(2017Z011,2016Z001,and 2014R17)Climate Change Special Fund of China Meteorological Administration(CCSF201504)Special Project for Doctoral Research of Liaoning Provincial Meteorological Bureau(D201501)
文摘This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22(E1) and 25–26(E2) December 2016 in Northeast China. The visibility, particulate matter(PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer(PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016–January 2017.Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1,whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.
文摘Gully erosion can account for significant volumes of sediment exiting agricultural landscapes, but is difficult to monitor and quantify its evolution with traditional surveying technology. Scientific investigations of gullies depend on accurate and detailed topographic information to understand and evaluate the complex interactions between field topography and gully evolution. Detailed terrain representations can be produced by new technologies such as terrestrial LiDAR systems. These systems are capable of collecting information with a wide range of ground point sampling densities as a result of operator controlled factors. Increasing point density results in richer datasets at a cost of increased time needed to complete field surveys. In large research watersheds, with hundreds of sites being monitored, data collection can become costly and time consuming. In this study, the effect of point sampling density on the capability to collect topographic information was investigated at individual gully scale. This was performed through the utilization of semi-variograms to produce overall guiding principles for multi-temporal gully surveys based on various levels of laser sampling points and relief variation (low, moderate, and high). Results indicated the existence of a point sampling density threshold that produces little or no additional topographic information when exceeded. A reduced dataset was created using the density thresholds and compared to the original dataset with no major discrepancy. Although variations in relief and soil roughness can lead to different point sampling density requirements, the outcome of this study serves as practical guidance for future field surveys of gully evolution and erosion.