For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a...For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.展开更多
In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth su...In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth surface correction. Based on the grinding principle of face gears, the equation of the long radius disk wheel is deduced. Based on the structure of the machining tool, the tooth surface equations of the face gear shaped by the long radius disk wheel are established. Furthermore, an optimization model of face gear tooth surface correction is established, and the machine tool motion optimization of face gear tooth surface correction is completed;Finally, a long radius disk wheel grinding face gear test is performed. After the face gear tooth surface correction, the maximum value of the tooth surface deviation is reduced from 180 μm to 16 μm which verified the correctness of the machining method.展开更多
基金National Natural Science Foundation of China(No. 50390061).
文摘For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.
基金Supported by Key Project of Advanced Research Foundation(9140A18020113)Advanced Research Foundation Project(9140A18020212)+1 种基金Advanced Research Project(51318025131812)
文摘In order to improve the machining efficiency of the dish wheel grinding face gear, two changes are proposed:a disk wheel grinding face gear with a long radius and a multi-axis movement optimization method for tooth surface correction. Based on the grinding principle of face gears, the equation of the long radius disk wheel is deduced. Based on the structure of the machining tool, the tooth surface equations of the face gear shaped by the long radius disk wheel are established. Furthermore, an optimization model of face gear tooth surface correction is established, and the machine tool motion optimization of face gear tooth surface correction is completed;Finally, a long radius disk wheel grinding face gear test is performed. After the face gear tooth surface correction, the maximum value of the tooth surface deviation is reduced from 180 μm to 16 μm which verified the correctness of the machining method.