【目的】针对我国设施菜地氨(NH_(3))挥发过高的问题,研究不同施肥方式下设施菜地NH_(3)挥发特征,分析各施肥方式下影响设施菜地NH_(3)挥发的重要因子,为以减氮增效为目标的设施菜地肥料管理模式制定提供相关科学依据。【方法】以长江...【目的】针对我国设施菜地氨(NH_(3))挥发过高的问题,研究不同施肥方式下设施菜地NH_(3)挥发特征,分析各施肥方式下影响设施菜地NH_(3)挥发的重要因子,为以减氮增效为目标的设施菜地肥料管理模式制定提供相关科学依据。【方法】以长江中下游地区典型设施菜地为研究对象,基于1次基肥和2次追肥的施肥方式,设置了不施氮处理(Control)、常规施氮处理(CF)、20%减氮缓释肥处理(SF)、20%减氮有机/无机肥配施处理(OF)、20%减氮复合微生物菌肥/无机肥配施处理(MF)和20%减氮水肥一体化处理(IM),共计6个田间试验处理。除Control处理外,其余各处理氮磷钾的全季施用比例均保持一致。使用通气法对不同施肥方式下的菜地NH_(3)挥发进行了原位监测,并同步分析不同施肥方式下可能影响菜地土壤NH_(3)挥发的相关因素。【结果】不同施肥方式处理下的菜地NH_(3)挥发动态基本一致,NH_(3)挥发峰值均出现在肥料施用后。基肥施用阶段,除IM处理在基肥施用1 d后NH_(3)挥发即达到峰值外,其余处理均在基肥施用后3 d达到NH_(3)挥发峰值,峰值范围为0.12—0.26 kg NH_(3)·hm^(-2)·h^(-1)。在追肥阶段,各处理NH_(3)挥发峰值出现时间均有不同程度提前,各处理的NH_(3)挥发通量在追肥-Ⅰ阶段的峰值范围为0.08—0.19 kg NH_(3)·hm^(-2)·h^(-1),追肥-Ⅱ阶段的峰值范围为0.13—0.18 kg NH_(3)·hm^(-2)·h^(-1)。NH_(3)挥发累积排放量由高至低依次为CF、MF、OF、SF、IM、Control。与CF施肥处理相比,SF和IM处理分别降低菜地累积NH_(3)挥发量24.2%和42.4%(P<0.05),OF和MF处理分别降低10.1%和8.3%(P>0.05)NH_(3)挥发累积量。此外,由NH_(3)挥发引起的氮肥损失率,由高至低依次为MF、OF、CF、SF、IM。与CF处理相比,MF处理始终具有较高的肥料NH_(3)-N损失率,而IM处理下则始终低于CF处理。与CF处理相比,SF和OF处理在基肥阶段的肥料NH_(3)-N损失率较低,但在�展开更多
文摘【目的】针对我国设施菜地氨(NH_(3))挥发过高的问题,研究不同施肥方式下设施菜地NH_(3)挥发特征,分析各施肥方式下影响设施菜地NH_(3)挥发的重要因子,为以减氮增效为目标的设施菜地肥料管理模式制定提供相关科学依据。【方法】以长江中下游地区典型设施菜地为研究对象,基于1次基肥和2次追肥的施肥方式,设置了不施氮处理(Control)、常规施氮处理(CF)、20%减氮缓释肥处理(SF)、20%减氮有机/无机肥配施处理(OF)、20%减氮复合微生物菌肥/无机肥配施处理(MF)和20%减氮水肥一体化处理(IM),共计6个田间试验处理。除Control处理外,其余各处理氮磷钾的全季施用比例均保持一致。使用通气法对不同施肥方式下的菜地NH_(3)挥发进行了原位监测,并同步分析不同施肥方式下可能影响菜地土壤NH_(3)挥发的相关因素。【结果】不同施肥方式处理下的菜地NH_(3)挥发动态基本一致,NH_(3)挥发峰值均出现在肥料施用后。基肥施用阶段,除IM处理在基肥施用1 d后NH_(3)挥发即达到峰值外,其余处理均在基肥施用后3 d达到NH_(3)挥发峰值,峰值范围为0.12—0.26 kg NH_(3)·hm^(-2)·h^(-1)。在追肥阶段,各处理NH_(3)挥发峰值出现时间均有不同程度提前,各处理的NH_(3)挥发通量在追肥-Ⅰ阶段的峰值范围为0.08—0.19 kg NH_(3)·hm^(-2)·h^(-1),追肥-Ⅱ阶段的峰值范围为0.13—0.18 kg NH_(3)·hm^(-2)·h^(-1)。NH_(3)挥发累积排放量由高至低依次为CF、MF、OF、SF、IM、Control。与CF施肥处理相比,SF和IM处理分别降低菜地累积NH_(3)挥发量24.2%和42.4%(P<0.05),OF和MF处理分别降低10.1%和8.3%(P>0.05)NH_(3)挥发累积量。此外,由NH_(3)挥发引起的氮肥损失率,由高至低依次为MF、OF、CF、SF、IM。与CF处理相比,MF处理始终具有较高的肥料NH_(3)-N损失率,而IM处理下则始终低于CF处理。与CF处理相比,SF和OF处理在基肥阶段的肥料NH_(3)-N损失率较低,但在�