Sensors are often based on minimalistic microcontrollers for their reduced power consumption and size. Because of the specific hardware of sensors, their software development, including debugging, is also particular. ...Sensors are often based on minimalistic microcontrollers for their reduced power consumption and size. Because of the specific hardware of sensors, their software development, including debugging, is also particular. Simulators and external computers are conventional approaches to sensor debugging, but they both face limitations such as the supported hardware and debugging conditions. In this paper, we propose a fully autonomous on-chip debugging solution for sensors (and other devices) based on AVR microcontrollers, with a particular focus on human-machine interaction. The proposal is then validated in practice through various experiments, notably involving real-world sensors. Formal measurement of the induced overhead is also conducted, which eventually demonstrates the applicability of the proposal.展开更多
The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis cau...The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis caused by the abuse of large quantities of electronics and petrochemicals.Next-generation "green" electronics or iontronics with high biocompatibility, biodegradation, low cost and mechanical compliance promise to mitigate these adverse effects, but are often limited by the finite choices of materials and strategies.Herein, maltose syrup, a traditional water-dissolvable saccharide food called "JiaoJiao" in Chinese, is engineered to replace unsustainable conductive components of current electronic devices. After churning and pulling with two chopsticks, known as aeration, the aerated maltose syrup has optimized viscoelasticity, mechanical adaptation, robustness,remodeling and self-healing capability, yet with transient behavior. Moreover, the structural and viscoelastic evolution during aeration is also analyzed to maximize the contribution from structures. As a proof-of-concept, a type of "green" skinlike iontronics is prepared, which exhibits reliable strain sensing ability and is subsequently applied for intelligent information encryption and transmission based on a novel concept of sending Morse code. This work greatly extends the current material choice and is expected to shed light on the development of a sustainable future.展开更多
文摘Sensors are often based on minimalistic microcontrollers for their reduced power consumption and size. Because of the specific hardware of sensors, their software development, including debugging, is also particular. Simulators and external computers are conventional approaches to sensor debugging, but they both face limitations such as the supported hardware and debugging conditions. In this paper, we propose a fully autonomous on-chip debugging solution for sensors (and other devices) based on AVR microcontrollers, with a particular focus on human-machine interaction. The proposal is then validated in practice through various experiments, notably involving real-world sensors. Formal measurement of the induced overhead is also conducted, which eventually demonstrates the applicability of the proposal.
基金supported by the National Natural Science Foundation of China (51733003)。
文摘The advancement of technology has had a profound impact on all areas of life, with an ever more intimate integration of the digital and biological spheres, but it may also be accompanied by an environmental crisis caused by the abuse of large quantities of electronics and petrochemicals.Next-generation "green" electronics or iontronics with high biocompatibility, biodegradation, low cost and mechanical compliance promise to mitigate these adverse effects, but are often limited by the finite choices of materials and strategies.Herein, maltose syrup, a traditional water-dissolvable saccharide food called "JiaoJiao" in Chinese, is engineered to replace unsustainable conductive components of current electronic devices. After churning and pulling with two chopsticks, known as aeration, the aerated maltose syrup has optimized viscoelasticity, mechanical adaptation, robustness,remodeling and self-healing capability, yet with transient behavior. Moreover, the structural and viscoelastic evolution during aeration is also analyzed to maximize the contribution from structures. As a proof-of-concept, a type of "green" skinlike iontronics is prepared, which exhibits reliable strain sensing ability and is subsequently applied for intelligent information encryption and transmission based on a novel concept of sending Morse code. This work greatly extends the current material choice and is expected to shed light on the development of a sustainable future.