With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
基于CHAMP和GRACE卫星,GOCE((Gravity Field and Stead-state Ocean Circulation Explore)是欧空局(ESA)的一颗重力场和静态洋流探测卫星。利用它可得到空间分辨率为200-80 km的全球重力场模型和1 cm精度的大地水准面。简要介绍了目前...基于CHAMP和GRACE卫星,GOCE((Gravity Field and Stead-state Ocean Circulation Explore)是欧空局(ESA)的一颗重力场和静态洋流探测卫星。利用它可得到空间分辨率为200-80 km的全球重力场模型和1 cm精度的大地水准面。简要介绍了目前重力卫星的发展现状与其局限 性,详细叙述了GOCE卫星的组成、科学目标、测量原理、在地球物理等学科中的重要应用,并 提出GOCE等重力卫星资料在我国的应用设想。展开更多
GOCE(gravity field and steady—state ocean circulation explorer)计划的主要科学目标是以70km空间分辨率、1mGal重力异常和1~2cm大地水准面的精度测定全球静态地球重力场,卫星重力梯度测量数据的预处理是实现这一预期科学目标...GOCE(gravity field and steady—state ocean circulation explorer)计划的主要科学目标是以70km空间分辨率、1mGal重力异常和1~2cm大地水准面的精度测定全球静态地球重力场,卫星重力梯度测量数据的预处理是实现这一预期科学目标的重要任务之一。讨论了重力梯度测量数据的预处理方案、时变重力场信号改正、粗差探测和外部校准方法,为进一步开展GOCE卫星重力梯度测量数据的预处理研究提供参考和具体建议。展开更多
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
文摘GOCE(gravity field and steady—state ocean circulation explorer)计划的主要科学目标是以70km空间分辨率、1mGal重力异常和1~2cm大地水准面的精度测定全球静态地球重力场,卫星重力梯度测量数据的预处理是实现这一预期科学目标的重要任务之一。讨论了重力梯度测量数据的预处理方案、时变重力场信号改正、粗差探测和外部校准方法,为进一步开展GOCE卫星重力梯度测量数据的预处理研究提供参考和具体建议。