This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discu...This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars.展开更多
By linear perturbation theory, a sensitivity study is presented to calculate the contribution of the Mars gravity field to the orbital perturbations in velocity for spacecrafts in both low eccentricity Mars orbits and...By linear perturbation theory, a sensitivity study is presented to calculate the contribution of the Mars gravity field to the orbital perturbations in velocity for spacecrafts in both low eccentricity Mars orbits and high eccentricity orbits(HEOs). In order to improve the solution of some low degree/order gravity coefficients, a method of choosing an appropriate semimajor axis is often used to calculate an expected orbital resonance, which will significantly amplify the magnitude of the position and velocity perturbations produced by certain gravity coefficients. We can then assess to what degree/order gravity coefficients can be recovered from the tracking data of the spacecraft. However, this existing method can only be applied to a low eccentricity orbit, and is not valid for an HEO. A new approach to choosing an appropriate semimajor axis is proposed here to analyze an orbital resonance. This approach can be applied to both low eccentricity orbits and HEOs. This small adjustment in the semimajor axis can improve the precision of gravity field coefficients and does not affect other scientific objectives.展开更多
GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission...GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon.展开更多
Earth off\|nadir pointing technology can be used on a small satellite to provide larger nadir earth surface imaging coverage. In this paper, the satellite attitude dynamics equations including the gravity\|gradient ...Earth off\|nadir pointing technology can be used on a small satellite to provide larger nadir earth surface imaging coverage. In this paper, the satellite attitude dynamics equations including the gravity\|gradient torque and wheel motor torque are derived using Euler parameters. The necessary conditions for optimum solutions subject to the performance index are obtained via Pontryagin's principle. The resulting two\|point boundary value problem is solved numerically with an optimal slew illustrated by example. 展开更多
Gravity Recovery and Climate Experiment(GRACE)satellite data monitors changes in terrestrial water storage,including groundwater,at a regional scale.However,the coarse spatial resolution limits its applicability to sm...Gravity Recovery and Climate Experiment(GRACE)satellite data monitors changes in terrestrial water storage,including groundwater,at a regional scale.However,the coarse spatial resolution limits its applicability to small watershed areas.This study introduces a novel ensemble learning-based model using meteorological and topographical data to enhance spatial resolution.The effectiveness was evaluated using groundwater-level observation data from the Henan rainstorm-affected area in July 2021.The factors influencing Groundwater Storage Anomalies(GWSA)were explored using Permutation Importance(Pi)and other methods.The results demonstrate that feature engineering and Blender ensemble learning improve downscaling accuracy;the Root Mean Square Error(RMSE)can be reduced by up to 18.95%.Furthermore,Blender ensemble learning decreased the RMSE by 3.58%,achieving an R-Square(R3)value of 0.7924.Restricting the downscaling inversion to June-August data greatly enhanced the accuracy,as evidenced by a holdout dataset test with an R2 value of 0.8247.The overall GWSA variation from January to August exhibited'slow rise,slow fall,sharp fall,and sharp rise.Additionally,heavy rain exhibits a lag effect on the groundwater supply.Meteorological and topographical factors drive fluctuations in GwSA values and changes in spatial distribution.Human activities also have a significant impact.展开更多
The physical investigations on the accuracy improvement to the measurement of the Earth's gravity field recovery are carried out based on the next-generation Pendulum-A/B out-of-plane twin-satellite formation in this...The physical investigations on the accuracy improvement to the measurement of the Earth's gravity field recovery are carried out based on the next-generation Pendulum-A/B out-of-plane twin-satellite formation in this paper. Firstly, the Earth's gravity field complete up to degree and order 100 is, respectively, recovered by the collinear and pendulum satellite formations using the orbital parameters of the satellite and the matching accuracies of key payloads from the twin GRACE satellites. The research results show that the accuracy of the Earth's gravity field model from the Pendulum-A/B satellite formation is about two times higher than from the collinear satellite formation, and the further improvement of the determination accuracy of the Earth's gravity field model is feasible by the next-generation Pendulum-A/B out-of-plane twin-satellite formation. Secondly, the Earth's gravity field from Pendulum-A/B complete up to degree and order 100 is accurately recovered based on the orbital parameters of the satellite (e.g., an orbital altitude of 400 km, an intersatellite range of 100 km, an orbital inclination of 89° and an orbital eccentricity of 0.001), the matching accuracies of space- borne instruments (e.g. 10-6 m in the intersatellite range, 10-3 m in the orbital position, 10-6 m/s in orbital velocity, and 10-11 m/s2 in non-conservative force), an observation time of 30 days and a sampling interval of 10 s. The measurement accuracy of the Earth's gravity field from the next-generation Pendulum-A/B out-of-plane twin-satellite formation is full of promise for being improved by about l0 times compared with that from the current GRACE satellite formation. Finally, the physical requirements for the next-generation Pendulum-A/B out-of-plane twin-satellite formation are analyzed, and it is proposed that the satellite orbital altitude be preferably designed to be close to 400±50 km and the matching precision of key sensors from the Pendulum-A/B mission be about one order of magnitude higher tha展开更多
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of...This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are cal- culated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areo- stationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both lin- early stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenval- ues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.展开更多
There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem...There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data.展开更多
基金supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office
文摘This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars.
基金Supported by the National Natural Science Foundation of China
文摘By linear perturbation theory, a sensitivity study is presented to calculate the contribution of the Mars gravity field to the orbital perturbations in velocity for spacecrafts in both low eccentricity Mars orbits and high eccentricity orbits(HEOs). In order to improve the solution of some low degree/order gravity coefficients, a method of choosing an appropriate semimajor axis is often used to calculate an expected orbital resonance, which will significantly amplify the magnitude of the position and velocity perturbations produced by certain gravity coefficients. We can then assess to what degree/order gravity coefficients can be recovered from the tracking data of the spacecraft. However, this existing method can only be applied to a low eccentricity orbit, and is not valid for an HEO. A new approach to choosing an appropriate semimajor axis is proposed here to analyze an orbital resonance. This approach can be applied to both low eccentricity orbits and HEOs. This small adjustment in the semimajor axis can improve the precision of gravity field coefficients and does not affect other scientific objectives.
文摘GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon.
文摘Earth off\|nadir pointing technology can be used on a small satellite to provide larger nadir earth surface imaging coverage. In this paper, the satellite attitude dynamics equations including the gravity\|gradient torque and wheel motor torque are derived using Euler parameters. The necessary conditions for optimum solutions subject to the performance index are obtained via Pontryagin's principle. The resulting two\|point boundary value problem is solved numerically with an optimal slew illustrated by example.
基金supported by National Natural Science Foundation of China:[grant no U1304402,41977284]Natural science and technology project of Department of Natural Resources of Henan Province:[grant no 2019-378-16].
文摘Gravity Recovery and Climate Experiment(GRACE)satellite data monitors changes in terrestrial water storage,including groundwater,at a regional scale.However,the coarse spatial resolution limits its applicability to small watershed areas.This study introduces a novel ensemble learning-based model using meteorological and topographical data to enhance spatial resolution.The effectiveness was evaluated using groundwater-level observation data from the Henan rainstorm-affected area in July 2021.The factors influencing Groundwater Storage Anomalies(GWSA)were explored using Permutation Importance(Pi)and other methods.The results demonstrate that feature engineering and Blender ensemble learning improve downscaling accuracy;the Root Mean Square Error(RMSE)can be reduced by up to 18.95%.Furthermore,Blender ensemble learning decreased the RMSE by 3.58%,achieving an R-Square(R3)value of 0.7924.Restricting the downscaling inversion to June-August data greatly enhanced the accuracy,as evidenced by a holdout dataset test with an R2 value of 0.8247.The overall GWSA variation from January to August exhibited'slow rise,slow fall,sharp fall,and sharp rise.Additionally,heavy rain exhibits a lag effect on the groundwater supply.Meteorological and topographical factors drive fluctuations in GwSA values and changes in spatial distribution.Human activities also have a significant impact.
基金Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholars(Grant No.KZCX2-EW-QN114)the National Natural Science Foundation of China(Grant Nos.41004006,41202094,41131067,and 11173049)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Grant No.2011)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grant No.11-0102)the Open Research Fund Program of the Key Laboratory of Geo-informatics of National Administration of Surveying,Mapping,and Geoinformation of China(Grant No.201322)the Open Research Fund Program of the State Key Laboratory of Geo-information Engineering,China(Grant No.SKLGIE2013M-1-5)the Main Direction Program of Institute of Geodesy and Geophysics,Chinese Academy of Sciences(Grant No.Y309451045)the Research Fund Program of State Key Laboratory of Geodesy and Earth’s Dynamics,China(Grant No.Y309491050)
文摘The physical investigations on the accuracy improvement to the measurement of the Earth's gravity field recovery are carried out based on the next-generation Pendulum-A/B out-of-plane twin-satellite formation in this paper. Firstly, the Earth's gravity field complete up to degree and order 100 is, respectively, recovered by the collinear and pendulum satellite formations using the orbital parameters of the satellite and the matching accuracies of key payloads from the twin GRACE satellites. The research results show that the accuracy of the Earth's gravity field model from the Pendulum-A/B satellite formation is about two times higher than from the collinear satellite formation, and the further improvement of the determination accuracy of the Earth's gravity field model is feasible by the next-generation Pendulum-A/B out-of-plane twin-satellite formation. Secondly, the Earth's gravity field from Pendulum-A/B complete up to degree and order 100 is accurately recovered based on the orbital parameters of the satellite (e.g., an orbital altitude of 400 km, an intersatellite range of 100 km, an orbital inclination of 89° and an orbital eccentricity of 0.001), the matching accuracies of space- borne instruments (e.g. 10-6 m in the intersatellite range, 10-3 m in the orbital position, 10-6 m/s in orbital velocity, and 10-11 m/s2 in non-conservative force), an observation time of 30 days and a sampling interval of 10 s. The measurement accuracy of the Earth's gravity field from the next-generation Pendulum-A/B out-of-plane twin-satellite formation is full of promise for being improved by about l0 times compared with that from the current GRACE satellite formation. Finally, the physical requirements for the next-generation Pendulum-A/B out-of-plane twin-satellite formation are analyzed, and it is proposed that the satellite orbital altitude be preferably designed to be close to 400±50 km and the matching precision of key sensors from the Pendulum-A/B mission be about one order of magnitude higher tha
基金supported by the National Basic Research Program of China (973 Program,No.2012CB720000)the National Natural Science Foundation of China(Grant No.11072122)
文摘This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are cal- culated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areo- stationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both lin- early stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenval- ues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
基金supported by NSFC/China (No. 91125006)IAM grant (No. IAM201215)partially by State Key Laboratory funding (No. SKLFSE201009)
文摘There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data.