Two ternary materials systems, which comprise two-photon initiators, oligomer and poly(methyl methacrylate), were prepared. A polymeric waveguide film was manufactured by spinning the materials on ITO, and the two-pho...Two ternary materials systems, which comprise two-photon initiators, oligomer and poly(methyl methacrylate), were prepared. A polymeric waveguide film was manufactured by spinning the materials on ITO, and the two-photon initiated photopolymerization(TPIP) was carried out successfully in the waveguide film. Consequently, an approach using TPIP is demonstrated for fabrication of grating in a thin polymeric film possessing waveguide properties. The results show that the resulted grating can manipulate and couple light.展开更多
Two ternary materials systems, which comprise photoinitiator/two-photon initiators, oligomer and binder were prepared. Polymeric waveguide film was manufactured by spinning the materials on optical glass (refraction i...Two ternary materials systems, which comprise photoinitiator/two-photon initiators, oligomer and binder were prepared. Polymeric waveguide film was manufactured by spinning the materials on optical glass (refraction index=1.5), the two-photon initiated photopolymerization (TPIP) and single-photon holographic photopolymerization were carried out respectively in the polymer waveguide film. The preparation of these materials was explained and absorption spectra were tested. The experimental results including the micrographs and diffraction patterns verifying the formation of grating waveguide structures were given. The results show that grating waveguide microstructures can be holographically fabricated by single-photon photopolymerization with low-power (tens mW ) continuous-wave (CW) laser at 532 nm successfully. Because the continuous-wave laser at 532 nm is handier than one at 514 nm.展开更多
文摘Two ternary materials systems, which comprise two-photon initiators, oligomer and poly(methyl methacrylate), were prepared. A polymeric waveguide film was manufactured by spinning the materials on ITO, and the two-photon initiated photopolymerization(TPIP) was carried out successfully in the waveguide film. Consequently, an approach using TPIP is demonstrated for fabrication of grating in a thin polymeric film possessing waveguide properties. The results show that the resulted grating can manipulate and couple light.
基金Project (2004CB719803) supported by the National Basic Research Program Project(60377041) supported by the National Natural Science Foundation of China
文摘Two ternary materials systems, which comprise photoinitiator/two-photon initiators, oligomer and binder were prepared. Polymeric waveguide film was manufactured by spinning the materials on optical glass (refraction index=1.5), the two-photon initiated photopolymerization (TPIP) and single-photon holographic photopolymerization were carried out respectively in the polymer waveguide film. The preparation of these materials was explained and absorption spectra were tested. The experimental results including the micrographs and diffraction patterns verifying the formation of grating waveguide structures were given. The results show that grating waveguide microstructures can be holographically fabricated by single-photon photopolymerization with low-power (tens mW ) continuous-wave (CW) laser at 532 nm successfully. Because the continuous-wave laser at 532 nm is handier than one at 514 nm.