By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at ...By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.展开更多
In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled ...In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled carbon nanotubes. In the graphene nanoribbons/CNTs composite, carbon nanotubes play a role of skeleton and support the exfoliated graphene nanoribbons to form the stereo structure. After high temperature heat-treatment with ammonium dihydrogen phosphate, the unique structure reserves both the properties of carbon nanotube and graphene, exhibiting excellent catalytic performance for the ORR with excellent onset and half-wave potential, which is similar to commercial Pt/C electrocatalysts.展开更多
Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNIKs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lith...Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNIKs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (L1Bs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.展开更多
We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near t...We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level sepa- rate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interest- ing half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future.展开更多
基金supported by the Science and Technology Program of Hunan Province,China (Grant No.2010DFJ411)the Natural Science Foundation of Hunan Province,China (Grant No.11JJ4001)the Fundamental Research Funds for the Central Universities,China (Grant No.201012200053)
文摘By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.
基金supported by the National Natural Science Foundation of China (Nos. 21306060, 21573083)the Program for New Century Excellent Talents in University of Ministry o Education of China (No. NCET-13-0237)+2 种基金the Doctoral Fund o Ministry of Education of China (No. 20130142120039)the Fundamental Research Funds for the Central University (Nos 2013TS136, 2014YQ009)the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-SC0012704)
文摘In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled carbon nanotubes. In the graphene nanoribbons/CNTs composite, carbon nanotubes play a role of skeleton and support the exfoliated graphene nanoribbons to form the stereo structure. After high temperature heat-treatment with ammonium dihydrogen phosphate, the unique structure reserves both the properties of carbon nanotube and graphene, exhibiting excellent catalytic performance for the ORR with excellent onset and half-wave potential, which is similar to commercial Pt/C electrocatalysts.
文摘Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNIKs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (L1Bs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.10834012 and 11374342)National Key Basic Research and Development Program of China(Grant No.2009CB930700)the Knowledge Innovation Foundation of the Chinese Academy of Sciences(Grant No.KJCX2-YW-W35)
文摘We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level sepa- rate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interest- ing half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future.