In this paper,we obtain the thickness for some complete k-partite graphs for k=2,3.We first compute the thickness of K_(n,n+8)by giving a planar decomposition of K_(4k-1,4k+7)for k≥3.Then,two planar decompositions fo...In this paper,we obtain the thickness for some complete k-partite graphs for k=2,3.We first compute the thickness of K_(n,n+8)by giving a planar decomposition of K_(4k-1,4k+7)for k≥3.Then,two planar decompositions for K_(1,g,g)(g-1)when g is even and for K^(1,g,1/2(g-1)2)when g is odd are obtained.Using a recursive construction,we also obtain the thickness for some complete tripartite graphs.The results here support the long-standing conjecture that the thickness of K_(m,n)is[mn/2(m+n-2)]for any positive integers m,n.展开更多
We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multi...We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs.展开更多
基金supported by the JSSCRC(Grant No.2021530)NNSFC under Grant No.12271392。
文摘In this paper,we obtain the thickness for some complete k-partite graphs for k=2,3.We first compute the thickness of K_(n,n+8)by giving a planar decomposition of K_(4k-1,4k+7)for k≥3.Then,two planar decompositions for K_(1,g,g)(g-1)when g is even and for K^(1,g,1/2(g-1)2)when g is odd are obtained.Using a recursive construction,we also obtain the thickness for some complete tripartite graphs.The results here support the long-standing conjecture that the thickness of K_(m,n)is[mn/2(m+n-2)]for any positive integers m,n.
文摘We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs.