In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical st...In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.展开更多
Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild ...Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28~C) can increase the survival rate of neural stem cells (1.0 x 105/~tL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy- pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and an- ti-apoptotic mechanisms.展开更多
Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we u...Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.展开更多
The residual consciousness of unconscious patients can be detected by studying the P300, a wave among event-related potentials. Previous studies have applied tones, the subject's name and other names as stimuli. Howe...The residual consciousness of unconscious patients can be detected by studying the P300, a wave among event-related potentials. Previous studies have applied tones, the subject's name and other names as stimuli. However, the results were not satisfactory. In this study, we changed the constituent order of subjects' two-character names to create derived names. The subject's derived names, together with tones and their own names, were used as auditory stimuli in event-related potential experiments. Healthy controls and unconscious patients were included in this study and made to listen to these auditory stimuli. In the two paradigms, a sine tone followed by the subject's own name and the subject's derived name followed by the subject's own name were used as standard and deviant stimuli, respectively. The results showed that all healthy controls had the P300 using both paradigms, and that the P300 in the second paradigm had a longer latency and two peaks. All minimally conscious state patients had the P300 in the first paradigm and the majority of them had the P300 in the second paradigm. Most vegetative state patients had no P300. Patients who showed the P300 in the two paradigms had more residual consciousness, and patients with the two-peak P300 had a higher probability of awakening within a short time. Our experimental findings suggest that the P300 event-related potential could reflect the conscious state of unconscious patients.展开更多
Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spi...Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.展开更多
Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local admini...Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration.展开更多
Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlu...Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimula-tion (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and in-terleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.展开更多
Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and n...Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and neurochemical effects of lactulose in a rat model of early hepatic encephalopathy induced by carbon tetrachloride. Immunohistochemistry showed that lactulose treatment promoted neurogenesis and increased the number of neurons and astrocytes in the hippocampus. Moreover, lactulose-treated rats showed shorter escape latencies than model rats in the Morris water maze, indicating that lactulose improved the cognitive impairments caused by hepatic encephalopathy. The present findings suggest that lactulose effectively improves cog- nitive function by enhancing neuroplasticity in a rat model of early hepatic encephalopathy.展开更多
This study aimed to detect the difference in resting cerebral activities between ischemic stroke pa- tients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, cli...This study aimed to detect the difference in resting cerebral activities between ischemic stroke pa- tients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunc- tion and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks) and 15 age-matched healthy participants. A rest- ing-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely po- tential targets for the neural regeneration of subacute ischemic stroke patients.展开更多
The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium su...The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.展开更多
Micro RNA-124(mi R-124) is abundantly expressed in neurons in the mammalian central nervous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural di...Micro RNA-124(mi R-124) is abundantly expressed in neurons in the mammalian central nervous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural differentiation. However, the expression profile of mi R-124 after spinal cord injury and the underlying regulatory mechanisms are not well understood. In the present study, we examined the expression of mi R-124 in mouse brain and spinal cord after spinal cord injury using in situ hybridization. Furthermore, the expression of mi R-124 was examined with quantitative RT-PCR at 1, 3 and 7 days after spinal cord injury. The mi R-124 expression in neurons at the site of injury was evaluated by in situ hybridization combined with Neu N immunohistochemical staining. The mi R-124 was mainly expressed in neurons throughout the brain and spinal cord. The expression of mi R-124 in neurons significantly decreased within 7 days after spinal cord injury. Some of the neurons in the peri-lesion area were Neu N+/mi R-124-. Moreover, the neurons distal to the peri-lesion site were Neu N+/mi R-124+. These findings indicate that mi R-124 expression in neurons is reduced after spinal cord injury, and may reflect the severity of spinal cord injury.展开更多
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staini...We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.展开更多
Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the la...Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno- histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immtmoreactivity and decreased caspase-3 immunoreactivity, Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.展开更多
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the...The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.展开更多
Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain...Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad- Glur6-9c on the phosphorylation of INK, MLK3 and mitogen-activated ldnase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of INK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.展开更多
基金funded by grants from the National Natural Science Foundation of China,No.81260295the Natural Science Foundation of Jiangxi Province of China,No.20132BAB205063
文摘In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.
基金supported by the National Natural Science Foundation of China,No.81271382
文摘Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28~C) can increase the survival rate of neural stem cells (1.0 x 105/~tL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy- pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our findings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inflammatory and an- ti-apoptotic mechanisms.
基金supported by the National Natural Science Foundation of China,No.81403458a grant from Cultivation Project Foundation for Youth Technological Talents of Southern Medical University,No.B1012015
文摘Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.
基金supported by grants from the National Natural Science Foundation of China,No.81371194
文摘The residual consciousness of unconscious patients can be detected by studying the P300, a wave among event-related potentials. Previous studies have applied tones, the subject's name and other names as stimuli. However, the results were not satisfactory. In this study, we changed the constituent order of subjects' two-character names to create derived names. The subject's derived names, together with tones and their own names, were used as auditory stimuli in event-related potential experiments. Healthy controls and unconscious patients were included in this study and made to listen to these auditory stimuli. In the two paradigms, a sine tone followed by the subject's own name and the subject's derived name followed by the subject's own name were used as standard and deviant stimuli, respectively. The results showed that all healthy controls had the P300 using both paradigms, and that the P300 in the second paradigm had a longer latency and two peaks. All minimally conscious state patients had the P300 in the first paradigm and the majority of them had the P300 in the second paradigm. Most vegetative state patients had no P300. Patients who showed the P300 in the two paradigms had more residual consciousness, and patients with the two-peak P300 had a higher probability of awakening within a short time. Our experimental findings suggest that the P300 event-related potential could reflect the conscious state of unconscious patients.
基金supported by the National Natural Science Foundation of China,No.31372473,30871886the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality of China,No.PHR201107134the 2012 Scientific Research Quality Raising Funds of Beijing University of Agriculture of China,No.PXM2012_014207_000010
文摘Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200the National Natural Science Foundation of China,No.31271284,81171146,31100860+1 种基金the Natural Science Foundation of Beijing of China,No.7142164Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201
文摘Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration.
基金supported by the Beijing Natural Science Foundation of China,No.7122164
文摘Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimula-tion (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and in-terleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.
基金supported by a grant from the National Natural Science Foundation of China,No.30873390
文摘Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and neurochemical effects of lactulose in a rat model of early hepatic encephalopathy induced by carbon tetrachloride. Immunohistochemistry showed that lactulose treatment promoted neurogenesis and increased the number of neurons and astrocytes in the hippocampus. Moreover, lactulose-treated rats showed shorter escape latencies than model rats in the Morris water maze, indicating that lactulose improved the cognitive impairments caused by hepatic encephalopathy. The present findings suggest that lactulose effectively improves cog- nitive function by enhancing neuroplasticity in a rat model of early hepatic encephalopathy.
基金supported by grants from the National Natural Science Foundation of China,No.81072864the Scientific Research Fund of Sichuan Provincial Education Department,No.12TD002
文摘This study aimed to detect the difference in resting cerebral activities between ischemic stroke pa- tients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunc- tion and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks) and 15 age-matched healthy participants. A rest- ing-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely po- tential targets for the neural regeneration of subacute ischemic stroke patients.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043,31371210Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair periph- eral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good his- tocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks), the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objec- tive and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,No.81371364
文摘Micro RNA-124(mi R-124) is abundantly expressed in neurons in the mammalian central nervous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural differentiation. However, the expression profile of mi R-124 after spinal cord injury and the underlying regulatory mechanisms are not well understood. In the present study, we examined the expression of mi R-124 in mouse brain and spinal cord after spinal cord injury using in situ hybridization. Furthermore, the expression of mi R-124 was examined with quantitative RT-PCR at 1, 3 and 7 days after spinal cord injury. The mi R-124 expression in neurons at the site of injury was evaluated by in situ hybridization combined with Neu N immunohistochemical staining. The mi R-124 was mainly expressed in neurons throughout the brain and spinal cord. The expression of mi R-124 in neurons significantly decreased within 7 days after spinal cord injury. Some of the neurons in the peri-lesion area were Neu N+/mi R-124-. Moreover, the neurons distal to the peri-lesion site were Neu N+/mi R-124+. These findings indicate that mi R-124 expression in neurons is reduced after spinal cord injury, and may reflect the severity of spinal cord injury.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270the Natural Science Foundation of Beijing of China,No.7142164
文摘We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.
基金supported by the National Natural Science Foundation of China,No.30971081,31271243,81070961 and 81241052the Natural Science Foundation of Shandong Province of China,No.ZR2011CM027 and 2012GGA08100
文摘Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno- histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immtmoreactivity and decreased caspase-3 immunoreactivity, Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.
基金supported by grants from the National Natural Science Foundation of China,No.81171799,81471854a Special Financial Grant from the China Postdoctoral Science Foundation,No.2013T60948
文摘The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.30800309,81372172the Educational Science Foundation of Jiangsu Province,China,No.10KJB350005+2 种基金the Xuzhou Science Foundation in China,No.XZZD1153the President Special Grant of Xuzhou Medical College in China,No.09KJZ20a grant from the Zhenxing Project Foundation of XZMC
文摘Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad- Glur6-9c on the phosphorylation of INK, MLK3 and mitogen-activated ldnase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of INK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.