The prevalence of multi drug resistant gram-negative bacteria to commonly first line drugs in blood is a serious problem in Equatorial Guinea and other world. This is the first study describing antibiotic resistance a...The prevalence of multi drug resistant gram-negative bacteria to commonly first line drugs in blood is a serious problem in Equatorial Guinea and other world. This is the first study describing antibiotic resistance analysis of blood stream infection in Equatorial Guinea. Our study presents alarming rate of inefficiency of the most commonly prescribed drugs to treatment Klebsiella pneumoniae, Escherichia coli and Acinetobacter species isolates as the most frequency etiologic agents in blood stream infection. Out of 1849 blood culture the bacterial etiological agents were isolated from 196 (10.6%) samples. E. coli (n = 22), K. pneumonia (n = 39) and Acinetobacter (n = 17) represent 71.6% of all gram negative bacterial isolates. Almost all isolates of K. pneumonia and Acinetobacter sp. (92.1% and 100%, respectively) and about 50% of E. coli strains possessed extended-spectrum β-lactamase activity. Alarming level of multi drug resistant gram negative strains was observed. E. coli and K. pneumonia and Acinetobacter isolates demonstrated low sensitivity to all commonly prescribed drugs such as Ampicillin, Trimethoprim/Sulfamethoxazole, Doxycycline, Gentamycin Amoxicicline/Clavulanic Acid, Cefuroxime, Ciprofloxacine. It is especially worth noting the low efficiency of third generation cephalosporins (Cefrtiaxon) against Acinetobacter and Klebsiella with their resistance rate of 94.7% and 100% respectively. Moreover, the alarming level of low sensitivity to Piperacilin/Tazobactam of K. pneumonia (22%) and Acinetobacter (29.4%) was been found. The 17.6% of Acinetobacter isolated was carbomenem resistant. Just Imipenem and Amikacin were the most sensitive drug against these bacterial strains.展开更多
文摘The prevalence of multi drug resistant gram-negative bacteria to commonly first line drugs in blood is a serious problem in Equatorial Guinea and other world. This is the first study describing antibiotic resistance analysis of blood stream infection in Equatorial Guinea. Our study presents alarming rate of inefficiency of the most commonly prescribed drugs to treatment Klebsiella pneumoniae, Escherichia coli and Acinetobacter species isolates as the most frequency etiologic agents in blood stream infection. Out of 1849 blood culture the bacterial etiological agents were isolated from 196 (10.6%) samples. E. coli (n = 22), K. pneumonia (n = 39) and Acinetobacter (n = 17) represent 71.6% of all gram negative bacterial isolates. Almost all isolates of K. pneumonia and Acinetobacter sp. (92.1% and 100%, respectively) and about 50% of E. coli strains possessed extended-spectrum β-lactamase activity. Alarming level of multi drug resistant gram negative strains was observed. E. coli and K. pneumonia and Acinetobacter isolates demonstrated low sensitivity to all commonly prescribed drugs such as Ampicillin, Trimethoprim/Sulfamethoxazole, Doxycycline, Gentamycin Amoxicicline/Clavulanic Acid, Cefuroxime, Ciprofloxacine. It is especially worth noting the low efficiency of third generation cephalosporins (Cefrtiaxon) against Acinetobacter and Klebsiella with their resistance rate of 94.7% and 100% respectively. Moreover, the alarming level of low sensitivity to Piperacilin/Tazobactam of K. pneumonia (22%) and Acinetobacter (29.4%) was been found. The 17.6% of Acinetobacter isolated was carbomenem resistant. Just Imipenem and Amikacin were the most sensitive drug against these bacterial strains.