Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consist...Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consisting of 32 polymer sensors.The Cyranose-320 was able to differentiate between varieties of rice.The chemical composition of the rice odors for differentiating rice samples needs to be investigated.The optimum parameter settings should be considered during the Cyranose-320 training process especially for multiple samples,which are helpful for obtaining an accurate training model to improve identification capability.Further,it is necessary to investigate the E-nose sensor selection for obtaining better classification accuracy.A re- duced number of sensors could potentially shorten the data processing time,and could be used to establish an application pro- cedure and reduce the cost for a specific electronic nose.Further research is needed for developing analytical procedures that adapt the Cyranose-320 as a tool for testing rice quality.展开更多
A method to check impurities in food grain based on digital image processing is proposed in this study. According to the feature of the impurity, one image with twice processing is put forward based on blob analysis, ...A method to check impurities in food grain based on digital image processing is proposed in this study. According to the feature of the impurity, one image with twice processing is put forward based on blob analysis, which eliminates impurities that were brighter or darker than normal particles. With the image processing system developed by Matrox Imaging Library, black and white blobs are extracted for twice with one function, and then the size and the position of impurities are calculated quickly through mathematical morphologic and blob analysis. The method can be extended and applied in other fields due to its advantages of quick speed and high accuracy.展开更多
With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkin...With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkiness is a key trait for appearance quality,which adversely affects cooking and eating quality,head rice yield,and commercial value.Therefore,chalkiness is undesirable,and reducing chalkiness is a major goal in rice quality improvement.However,chalkiness is a complex trait jointly influenced by genetic and environmental factors,making its genetic study and precision improvement a huge challenge.With the rapid development of molecular techniques,much knowledge has been gained about the genes and molecular networks involved in chalkiness formation.The present review describes the major environmental factors affecting chalkiness and summarizes the quantitative trait loci(QTL)associated with chalkiness.More than 150 genes related to chalkiness formation have been reported.The functions of the genes regulating chalkiness,primarily those involved in starch synthesis,storage protein synthesis,transcription regulation,organelle development,grain shape regulation,and hightemperature response,are described.Finally,we identify the challenges associated with genetic improvement of chalkiness and suggest potential strategies.Thus,the review offers insight into the molecular dynamics of chalkiness and provides a strong basis for the future breeding of high-quality rice varieties.展开更多
基金support from the Doctoral Fund of Ministry of Education of China (No 20070224003)oversea research project of Hei-longjiang Province Education Agency, China (No1151HZ01)research project of Heilongjiang Province Education Agency, China (No 10531002).
文摘Four rice samples of long grain type were tested using an electronic nose (Cyranose-320).Samples of 5 g of each variety of rice were placed individually in vials and were analyzed with the electronic nose unit consisting of 32 polymer sensors.The Cyranose-320 was able to differentiate between varieties of rice.The chemical composition of the rice odors for differentiating rice samples needs to be investigated.The optimum parameter settings should be considered during the Cyranose-320 training process especially for multiple samples,which are helpful for obtaining an accurate training model to improve identification capability.Further,it is necessary to investigate the E-nose sensor selection for obtaining better classification accuracy.A re- duced number of sensors could potentially shorten the data processing time,and could be used to establish an application pro- cedure and reduce the cost for a specific electronic nose.Further research is needed for developing analytical procedures that adapt the Cyranose-320 as a tool for testing rice quality.
文摘A method to check impurities in food grain based on digital image processing is proposed in this study. According to the feature of the impurity, one image with twice processing is put forward based on blob analysis, which eliminates impurities that were brighter or darker than normal particles. With the image processing system developed by Matrox Imaging Library, black and white blobs are extracted for twice with one function, and then the size and the position of impurities are calculated quickly through mathematical morphologic and blob analysis. The method can be extended and applied in other fields due to its advantages of quick speed and high accuracy.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515010400,2023A1515030023)the Discipline Team of Agricultural Competitive Industries in Guangdong Academy of Agricultural Sciences(202101TD)+1 种基金the Special Fund for Scientific Innovation Strategyconstruction of High-level Academy of Agriculture Science(R2023PY-JX001)the Guangdong Key Laboratory of New Technology in Rice Breeding(2023B1212060042).
文摘With rising living standards,there is an increasing demand for high-quality rice.Rice quality is mainly defined by milling quality,appearance quality,cooking and eating quality,and nutrition quality.Among them,chalkiness is a key trait for appearance quality,which adversely affects cooking and eating quality,head rice yield,and commercial value.Therefore,chalkiness is undesirable,and reducing chalkiness is a major goal in rice quality improvement.However,chalkiness is a complex trait jointly influenced by genetic and environmental factors,making its genetic study and precision improvement a huge challenge.With the rapid development of molecular techniques,much knowledge has been gained about the genes and molecular networks involved in chalkiness formation.The present review describes the major environmental factors affecting chalkiness and summarizes the quantitative trait loci(QTL)associated with chalkiness.More than 150 genes related to chalkiness formation have been reported.The functions of the genes regulating chalkiness,primarily those involved in starch synthesis,storage protein synthesis,transcription regulation,organelle development,grain shape regulation,and hightemperature response,are described.Finally,we identify the challenges associated with genetic improvement of chalkiness and suggest potential strategies.Thus,the review offers insight into the molecular dynamics of chalkiness and provides a strong basis for the future breeding of high-quality rice varieties.