The title copolymer was synthesized by grafting dimethyldiallylammonium chloride onto chitosan with ammonium cerium nitrate as initiator. The effects of reaction temperature, pH and concentration of initiator on produ...The title copolymer was synthesized by grafting dimethyldiallylammonium chloride onto chitosan with ammonium cerium nitrate as initiator. The effects of reaction temperature, pH and concentration of initiator on product yield were examined. The optimum conditions were as follows:90 ℃, concentration of initiator 5×10 -4 mol/L, pH=6. The flocculation experiments on the fermentation wastewater showed that flocculabi- lity of the chitosan graft copolymer was better than the chitosan itself and the flocculation treatment could be carried out at lower dosage and wider pH range.展开更多
合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对...合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对其形貌、粒径及包封率进行了表征,结果表明:不同共聚物/药物比例会影响载药纳米粒子的粒径、粒径分布及包封率.此外,载药纳米粒子的体外释放实验表明:在弱碱条件(pH=7.4)下的释放速度比在弱酸条件(pH=5.0)下的慢,说明释放介质的pH对其释放性能有较大影响,有利于药物在肿瘤细胞中的控释.展开更多
文摘The title copolymer was synthesized by grafting dimethyldiallylammonium chloride onto chitosan with ammonium cerium nitrate as initiator. The effects of reaction temperature, pH and concentration of initiator on product yield were examined. The optimum conditions were as follows:90 ℃, concentration of initiator 5×10 -4 mol/L, pH=6. The flocculation experiments on the fermentation wastewater showed that flocculabi- lity of the chitosan graft copolymer was better than the chitosan itself and the flocculation treatment could be carried out at lower dosage and wider pH range.
文摘合成葡聚糖-聚乳酸接枝共聚物,并以此为载体,选择盐酸阿霉素为模型药物,利用纳米沉淀法和双乳法构建出了载药纳米粒子,并通过透射电镜(scanning electron microscope,TEM)、动态光散射(dynamic light scattering,DLS)、紫外(UV-vis)对其形貌、粒径及包封率进行了表征,结果表明:不同共聚物/药物比例会影响载药纳米粒子的粒径、粒径分布及包封率.此外,载药纳米粒子的体外释放实验表明:在弱碱条件(pH=7.4)下的释放速度比在弱酸条件(pH=5.0)下的慢,说明释放介质的pH对其释放性能有较大影响,有利于药物在肿瘤细胞中的控释.