Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (G...Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (GC) could reduce myocardial ischemia-reperfusion (IR) injury in rat heart. Methods: Twelve rats were randomized to IR group and GC group, then the hearts were isolated and perfused with Langendorff apparatus. Before cardioplegia, the perfusion was stopped abruptly in IR group while slowly with 5-minute in GC group. The hearts were subjected to 30-minute ischemia and 60-minute reperfusion. The left ventricular develop pressure (LVDP) and systolic pressure (LVSP), the maximal rate of the increase and decrease of left ventricular pressure (+dp/dt<sub>max</sub>, ﹣dp/dt<sub>max</sub>) were measured by polygraph system at different time points. The recovery of the variables was expressed as the ratio of these values at individual time point after reperfusion to the baseline respectively. Results: The recovery of LVDP after reperfusion was better than that in IR group (P = 0.034). No significant difference in the recovery of LVSP, +dp/dtmax and ﹣dp/dt<sub>max</sub> between groups was observed. Conclusions: Gradual clamping could improve the recovery of LVDP after IR, suggesting that gradual clamping could reduce myocardial IR injury.展开更多
The question of why only two species of vascular plant have colonized Antarctica has not been fully answered. This review is based on a series of parallel analyses of distribution, ecology, and adaptation on the morph...The question of why only two species of vascular plant have colonized Antarctica has not been fully answered. This review is based on a series of parallel analyses of distribution, ecology, and adaptation on the morphological, cellular, and molecular genetic levels, and addresses the causes of the exclusive adaptation of Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. The authors conclude that the unique distribution of these species, including the Antarctic Peninsula, is not related to the presence of any specific mechanisms of adaptation to the ex-treme environment, but rather is a result of a gradual adaptation of these taxa to the extreme conditions during the de-velopment of glacial events and wide distribution and a substantial seed bank which could ensure mosaic survival in some ice-free areas, as well as survival through several years of snow and ice cover. Glaciological, molecular, popula-tion and reproduction biology studies are still necessary to deepen our understanding of the timing of the colonization of the region by vascular plants. However, keeping in mind that molecular methods alone are unlikely to give exhaus-tive evidence, application of other adequate methods in the context of the history of Pleistocenic glaciation in the region is also necessary to answer the question.展开更多
文摘Objectives: We hypothesized that the organisms and their organs or tissues could adapt themselves to the gradual changes of environment for surviving or reducing damage. This study explored whether gradual clamping (GC) could reduce myocardial ischemia-reperfusion (IR) injury in rat heart. Methods: Twelve rats were randomized to IR group and GC group, then the hearts were isolated and perfused with Langendorff apparatus. Before cardioplegia, the perfusion was stopped abruptly in IR group while slowly with 5-minute in GC group. The hearts were subjected to 30-minute ischemia and 60-minute reperfusion. The left ventricular develop pressure (LVDP) and systolic pressure (LVSP), the maximal rate of the increase and decrease of left ventricular pressure (+dp/dt<sub>max</sub>, ﹣dp/dt<sub>max</sub>) were measured by polygraph system at different time points. The recovery of the variables was expressed as the ratio of these values at individual time point after reperfusion to the baseline respectively. Results: The recovery of LVDP after reperfusion was better than that in IR group (P = 0.034). No significant difference in the recovery of LVSP, +dp/dtmax and ﹣dp/dt<sub>max</sub> between groups was observed. Conclusions: Gradual clamping could improve the recovery of LVDP after IR, suggesting that gradual clamping could reduce myocardial IR injury.
文摘The question of why only two species of vascular plant have colonized Antarctica has not been fully answered. This review is based on a series of parallel analyses of distribution, ecology, and adaptation on the morphological, cellular, and molecular genetic levels, and addresses the causes of the exclusive adaptation of Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. The authors conclude that the unique distribution of these species, including the Antarctic Peninsula, is not related to the presence of any specific mechanisms of adaptation to the ex-treme environment, but rather is a result of a gradual adaptation of these taxa to the extreme conditions during the de-velopment of glacial events and wide distribution and a substantial seed bank which could ensure mosaic survival in some ice-free areas, as well as survival through several years of snow and ice cover. Glaciological, molecular, popula-tion and reproduction biology studies are still necessary to deepen our understanding of the timing of the colonization of the region by vascular plants. However, keeping in mind that molecular methods alone are unlikely to give exhaus-tive evidence, application of other adequate methods in the context of the history of Pleistocenic glaciation in the region is also necessary to answer the question.