The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endotheli...The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endothelical Cells (ECs) exposed to fluid shear stress. The steady flow in different kinds of PPFC has been extensively investigated, whereas, the pulsatile flow in the PPFC has received little attention. In consideration of the characteristics of geometrical size and pulsatile flow in the PPFC, the 3-D pulsatile flow was decomposed into a 2-D pulsatile flow in the vertical plane, and an incompressible plane potential flow in the horizontal plane. A simple method was then proposed to analyze the pulsatile flow in the PPFC with spatial shear stress gradient. On the basis of the method, the pulsatile fluid shear stresses in several reported PPFCs with spatial shear stress gradients were calculated. The results were theoretically meaningful for applying the PPFCs in-vitro, to simulate the pulsatile fluid shear stress environment, to which cultured ECs were exposed.展开更多
Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial syste...Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10472027, 30670511).
文摘The Parallel-Plate Flow Chamber (PPFC), of which the height is far smaller than its own length and width, is one of the main apparatus for the in-vitro study of the mechanical behavior of cultured vascular Endothelical Cells (ECs) exposed to fluid shear stress. The steady flow in different kinds of PPFC has been extensively investigated, whereas, the pulsatile flow in the PPFC has received little attention. In consideration of the characteristics of geometrical size and pulsatile flow in the PPFC, the 3-D pulsatile flow was decomposed into a 2-D pulsatile flow in the vertical plane, and an incompressible plane potential flow in the horizontal plane. A simple method was then proposed to analyze the pulsatile flow in the PPFC with spatial shear stress gradient. On the basis of the method, the pulsatile fluid shear stresses in several reported PPFCs with spatial shear stress gradients were calculated. The results were theoretically meaningful for applying the PPFCs in-vitro, to simulate the pulsatile fluid shear stress environment, to which cultured ECs were exposed.
文摘Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.