White sandstone samples from Hanout area of Late Cambrian-Early Ordovician sandstone in south of Jordan were studied and assessed as a source of glass sand. Upgrading the sand included removing or reducing the content...White sandstone samples from Hanout area of Late Cambrian-Early Ordovician sandstone in south of Jordan were studied and assessed as a source of glass sand. Upgrading the sand included removing or reducing the content of the contaminant oxides and the heavy minerals. The aim of this research was to achieve this upgrading by examining the best-suited and cost-effective processing method(s) with sufficient product recovery. Following the initial sample characterisation at “bench scale”, a pilot study was performed. A high-grade Glass Sand product of 500 - 125 μm size fraction was produced by wet screening, attrition scrubbing and the separation of heavy minerals using spirals. The high quality Glass Sand product compared well with Grade-A of the British Standard for glass sand. Due to the relatively low level of impurities in the raw material, a substantial silica sand recovery was produced with a high silica grade. The silica sand product was capable to be used in the high quality glass industry and in many other applications where pure silica is required. The mass flowrate of the feeds and the products in the spiral was calculated for the bulk sample as well as the amount of water required operating the process.展开更多
Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by ...Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect,which poses a major problem in industrial-scale fabrication.To solve this problem,we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides,so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched.The as-fabricated ePTFE membrane has,as designed,uniform thickness and node-fibril microstructure.In addition,we examine the effects of mass ratio of lubricant to PTFE powder,biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes.Particularly,the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed.Besides stable mechanical properties,the sintered ePTFE membrane exhibits satisfactory biological properties.We make a series of biological assessments including in vitro hemolysis,coagulation,bacterial reverse mutation and in vivo thrombosis,intracutaneous reactivity test,pyrogen test and subchronic systemic toxicity test;all of the results meet the relevant international standards.The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale.Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.展开更多
文摘White sandstone samples from Hanout area of Late Cambrian-Early Ordovician sandstone in south of Jordan were studied and assessed as a source of glass sand. Upgrading the sand included removing or reducing the content of the contaminant oxides and the heavy minerals. The aim of this research was to achieve this upgrading by examining the best-suited and cost-effective processing method(s) with sufficient product recovery. Following the initial sample characterisation at “bench scale”, a pilot study was performed. A high-grade Glass Sand product of 500 - 125 μm size fraction was produced by wet screening, attrition scrubbing and the separation of heavy minerals using spirals. The high quality Glass Sand product compared well with Grade-A of the British Standard for glass sand. Due to the relatively low level of impurities in the raw material, a substantial silica sand recovery was produced with a high silica grade. The silica sand product was capable to be used in the high quality glass industry and in many other applications where pure silica is required. The mass flowrate of the feeds and the products in the spiral was calculated for the bulk sample as well as the amount of water required operating the process.
基金supports from National Natural Science Foundation of China(grant no.52130302)National Key R&D Program of China(grant no.2016YFC1100300)。
文摘Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect,which poses a major problem in industrial-scale fabrication.To solve this problem,we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides,so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched.The as-fabricated ePTFE membrane has,as designed,uniform thickness and node-fibril microstructure.In addition,we examine the effects of mass ratio of lubricant to PTFE powder,biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes.Particularly,the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed.Besides stable mechanical properties,the sintered ePTFE membrane exhibits satisfactory biological properties.We make a series of biological assessments including in vitro hemolysis,coagulation,bacterial reverse mutation and in vivo thrombosis,intracutaneous reactivity test,pyrogen test and subchronic systemic toxicity test;all of the results meet the relevant international standards.The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale.Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.